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CHAPTER 10

Vectors and Coordinate
Geometry in 3-Space

Introduction A complete real-variable calculus program involves the study of
(i) real-valued functions of a single real variable,
(i1) vector-valued functions of a single real variable,
(iii) real-valued functions of a real vector variable,
(iv) vector-valued functions of a real vector variable.

Chapters 1-9 are concerned with item (i). The remaining chapters deal with items
(ii), (iii), and (iv). Specifically, Chapter 11 deals with vector-valued functions of
a single real variable. Chapters 12—14 are concerned with the differentiation and
integration of real-valued functions of several real variables, that is, of a real vector
variable. Chapters 15 and 16 present aspects of the calculus of functions whose
domains and ranges both have dimension greater than one, that is, vector-valued
functions of a vector variable. Most of the time we will limit our attention to vector
functions with domains and ranges in the plane, or in 3-dimensional space.

In this chapter we will lay the foundation for multivariable and vector calculus
by extending the concepts of analytic geometry to three or more dimensions and by
introducing vectors as a convenient way of dealing with several variables as a single
entity. We also introduce matrices, because these will prove useful for formulating
some of the concepts of calculus. This chapter is not intended to be a course in
linear algebra. We develop only those aspects that we will use in later chapters and
omit most proofs.

We say that the physical world in which we live is three-dimensional because
through any point there can pass three, and no more, straight lines that are mutually
perpendicular, that is, each of them is perpendicular to the other two. This is
equivalent to the fact that we require three numbers to locate a point in space with
respect to some reference point (the origin). One way to use three numbers to locate
a point is by having them represent (signed) distances from the origin, measured
in the directions of three mutually perpendicular lines passing through the origin.
We call such a set of lines a Cartesian coordinate system, and each of the lines is
called a coordinate axis. We usually call these axes the x-axis, the y-axis, and the
z-axis, regarding the x- and y-axes as lying in a horizontal plane and the z-axis as
vertical. Moreover, the coordinate system should have a right-handed orientation.
This means that the thumb, forefinger, and middle finger of the right hand can be
extended so as to point, respectively, in the directions of the positive x-axis, the
positive y-axis, and the positive z-axis. For the more mechanically minded, a right-
handed screw will advance in the positive z direction if twisted in the direction of
rotation from the positive x-axis toward the positive y-axis. (See Figure 10.1(a).)
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Figure 10.1

(a) The screw moves upward when
twisted counterclockwise as seen

from above

(b) The three coordinates of a point in *

3-space
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(a)

With respect to such a Cartesian coordinate system, the coordinates of a point P
in 3-space constitute an ordered triple of real numbers, (x, y, z). The numbers x,
y, and z are, respectively, the signed distances of P from the origin, measured in
the directions of the x-axis, the y-axis, and the z-axis. (See Figure 10.1(b).)

(b)

Let Q be the point with coordinates (x, y, 0). Then Q lies in the xy-plane (the
plane containing the x- and y-axes) directly under (or over) P. We say that Q is
the vertical projection of P onto the xy-plane. If r is the distance from the origin
O to P and s is the distance from O to Q, then, using two right-angled triangles,
we have

2

s2=x24y? and P =x24y2 42

Thus, the distance from P to the origin is given by
r=+x*+y*+z2

Similarly, the distance r between points P; = (x1, y1,z1) and P, = (x2, y2, 22)
(see Figure 10.2) is

=2 —x1)%+ (2 — )2+ (22 — 21)%

Show that the triangle with vertices A = (1, —1,2), B = (3, 3, 8),
and C = (2,0, 1) has a right angle.

Solution We calculate the lengths of the three sides of the triangle:

a=|BCl=v@2 =32+ (0-23)72+(1—8)?2 =59
b=|AC| =2 -1+ 0+ 1)2+(1-22=+3
c=1ABl=v/B - 12+ 3+ 12+ (82?2 =+/56

By the cosine law, > = b?4c?—2bccos A. Inthis case a? = 59 = 3456 = b%+c?,

so that 2bc cos A must be 0. Therefore cos A = 0 and A = 90°.
|




X

Figure 10.3 The first octant

]

Figure 10.4 Equation x = y defines
a vertical plane

Figure 10.5 The plane with
equationx +y+z =1
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Just as the x- and y-axes divide the xy-plane into four quadrants, so also the three
coordinate planes in 3-space (the xy-plane, the xz-plane, and the yz-plane) divide
3-space into eight octants. We call the octant in whichx > 0, y > 0, and z > O the
first octant. When drawing graphs in 3-space it is sometimes easier to draw only
the part lying in the first octant (Figure 10.3).

An equation or inequality involving the three variables x, y, and z defines a

subset of points in 3-space whose coordinates satisfy the equation or inequality. A
single equation usually represents a surface (a two-dimensional object) in 3-space.

XA (Some equations and the surfaces they represent)

(a)

(b)

(¢)

(@

(e

®

The equation z = 0 represents all points with coordinates (x, y, 0), that is,
the xy-plane. The equation z = —2 represents all points with coordinates
(x, y, —2), that is, the horizontal plane passing through the point (0, 0, —2) on
the z-axis.

The equation x = y represents all points with coordinates (x, x, z). This is a
vertical plane containing the straight line with equation x = y in the xy-plane.
The plane also contains the z-axis. (See Figure 10.4.)

The equation x + y 4+ z = 1 represents all points the sum of whose coordinates
is 1. This set is a plane that passes through the three points (1, 0, 0), (0, 1, 0),
and (0, 0, 1). These points are not collinear (they do not lie on a straight line),
so there is only one plane passing through all three. (See Figure 10.5.) The
equation x + y + z = O represents a plane parailel to the one with equation
x + y + z = 1 but passing through the origin.

The equation x> 4+ y? = 4 represents all points on the vertical circular cylinder
containing the circle with equation x? + y> = 4 in the xy-plane. This cylinder
has radius 2 and axis along the z-axis. (See Figure 10.6.)

The equation z = x? represents all points with coordinates (x, v, x?). This
surface is a parabolic cylinder tangent to the xy-plane along the y-axis. (See
Figure 10.7.)

The equation x? 4 y2 + z2 = 25 represents all points (x, v, z) at distance 5

from the origin. This set of points is a sphere of radius 5 centred at the origin.
|

Z Z

X

Figure 10.6 The circular cylinder Figure 10.7 The parabolic
with equation x? + y2 = 4 cylinder with equation z = x?

Observe that equations in x, y, and z need not involve each variable explicitly.
When one of the variables is missing from the equation, the equation represents a
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Y+@-17=0

y

V+E-1)2=4
X

Figure 10.8 The cylinder

y2 + (z — 12 = 4 and its axial line

Y4+ (z—-1)2=0

surface parallel to the axis of the missing variable. Such a surface may be a plane
or a cylinder. For example, if z is absent from the equation, the equation represents
in 3-space a vertical (i.e., parallel to the z-axis) surface containing the curve with
the same equation in the xy-plane.

Occasionally a single equation may not represent a two-dimensional object
(a surface). It can represent a one-dimensional object (a line or curve), a zero-
dimensional object (one or more points), or even nothing at all.

Identify the graphs of the equations:  (a) y? + (z — 1)? = 4,
b)Y+ E-12=0, (x*+y*+22=0,and(d) x>+ y> + 7> = —1.

Solution

(a) Since x is absent, the equation y2+(z— N2=4 represents an object parallel to
the x-axis. In the yz-plane the equation represents a circle of radius 2 centred at
(y,2) = (0, 1). In 3-space it represents a horizontal circular cylinder, parallel
to the x-axis, with axis one unit above the x-axis. (See Figure 10.8.)

(b) Since squares cannot be negative, the equation y% + (z — 1)> = 0 implies that
y = 0 and z = 1, so it represents points (x, 0, 1). All these points lie on the
line parallel to the x-axis and one unit above it. (See Figure 10.8.)

(c) As in part (b), x> + y? + 7% = O implies that x = 0, y = 0, and z = 0. The
equation represents only one point, the origin.

(d) The equation x2 + y% 4+ z2 = —1 is not satisfied by any real numbers x, y, and

Z, SO it represents no points at all. -

A single inequality in x, y, and z typically represents points lying on one side of
the surface represented by the corresponding equation (together with points on the
surface if the inequality is not strict).

Example 4
(a) The inequality z > O represents all points above the x y-plane.

(b) The inequality x24+y2>4 says that the square of the distance from (x, y, z) to
the nearest point (0, 0, z) on the z-axis is at least 4. This inequality represents
all points lying on or outside the cylinder of Example 2(d).

(c) The inequality x> + y% + z? < 25 says that the square of the distance from
(x, ¥, z) to the origin is no greater than 25. It represents the solid ball of radius
5 centred at the origin, which consists of all points lying inside or on the sphere

of Example 2(f).
-

Two equations in x, y, and z normally represent a one-dimensional object, the line
or curve along which the two surfaces represented by the two equations intersect.
Any point whose coordinates satisfy both equations must lie on both the surfaces,
so must lie on their intersection.

What sets of points in 3-space are represented by the pairs of
equations?
x+y+z=1 24y24+2=1
b
(a) [y_2x=0 (b) {x+y=1
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(a) The two planes intersect in a x
straight line

(b) The plane intersects the sphere in
a circle
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Solution

(a) The equation x + y + z = 1 represents the oblique plane of Example 2(c), and
the equation y — 2x = 0 represents a vertical plane through the origin and the
point (1, 2, 0). Together these two equations represent the line of intersection
of the two planes. This line passes through, for example, the points (0, 0, 1)
and (1, 2,0). (See Figure 10.9(a).)

(b) The equation x>+ y2+z? = 1 represents a sphere of radius 1 with centre at the
origin, and x + y = 1 represents a vertical plane through the points (1, 0, 0)
and (0, 1, 0). The two surfaces intersect in a circle, as shown in Figure 10.9(b).
The line from (1, 0, 0) to (0, 1, 0) is a diameter of the circle, so the centre of
the circle is (1, 1, 0), and its radius is +/2/2.

x+y=1

(a) (b)

In Sections 10.4 and 10.5 we will see many more examples of geometric objects in
3-space represented by simple equations.

Euclidean n-Space

Mathematicians and users of mathematics frequently need to consider n-dimen-
sional space where #n is greater than 3, and may even be infinite. It is difficult to
visualize a space of dimension 4 or higher geometrically. The secret to dealing
with these spaces is to regard the points in n-space as being ordered n-tuples of
real numbers; that is, (x, x2, ..., X,) is a point in n-space instead of just being the
coordinates of such a point. We stop thinking of points as existing in physical space
and start thinking of them as algebraic objects. We usually denote n-space by the
symbol R” to show that its points are n-tuples of real numbers. Thus R? and R?
denote the plane and 3-space, respectively. Note that in passing from R to R* we
have altered the notation a bit: in R®> we called the coordinates x, v, and z while
in R" we called them x, x», ...and x, so as not to run out of letters. We could,
of course, talk about coordinates (x{, x2, x3) in R® and (x;, x) in the plane R?, but
(x,y,z)and (x, y) are traditionally used there.

Although we think of points in R* as n-tuples rather than geometric objects,

we do not want to lose all sight of the underlying geometry. By analogy with the
two- and three-dimensional cases, we still consider the quantity

VoI —x)2+ (0 — 522+ -+ O — )?
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oint in $¢
oundary point
pointin $

SC

interior point

Figure 10.10 The closed disk S
consisting of points (x, y) € R?
satisfying x” + y2 < 1. Note the
shaded neighbourhoods of the boundary
point and the interior point.

bdry(S) is the circle x% + y2 = 1
int(S$) is the open disk x% + y? < 1
ext(S) is the open set X%+ y2>1

as representing the distance between the points with coordinates (x;, x2, ..., X,)
and (y1, ¥2, ..., ¥n). Also, we call the (n — 1)-dimensional set of points in R” that
satisfy the equation x,, = 0 a hyperplane, by analogy with the plane z = 0 in R>.

Describing Sets in the Plane, 3-Space, and n-Space

We conclude this section by collecting some definitions of terms used to describe
sets of points in R” for n > 2. These terms belong to the branch of mathematics
called topology, and they generalize the notions of open and closed intervals and
endpoints used to describe sets on the real line R. We state the definitions for R”,
but we are most interested in the cases wheren =2 orn = 3.

A neighbourhood of a point P in R” is a set of the form

B,(P) = {Q € R" : distance from Q to P < r}

for some r > 0.

Forn = 1,if p € R, then B,(p) is the open interval ]p — r, p + r[ centred at p.
For n = 2, B, (P) is the open disk of radius r centred at point P.

For n = 3, B,(P) is the open ball of radius r centred at point P.

A set S is open in R” if every point of S has a neighbourhood contained in
S. Every neighbourhood is itself an open set. Other examples of open sets in R?
include the sets of points (x, y) such that x > 0, or such that y > x2, or even such
that y # x2. Typically, sets defined by strict inequalities (using “>" and “<”) are
open. Examples in R® include the sets of points (x, v, 7) satisfying x +y +z > 2,
orl <x <3.

The whole space R” is an open set in itself. For technical reasons, the empty
set (containing no points) is also considered to be open. (No point in the empty set
fails to have a neighbourhood contained in the empty set.)

The complement, S¢, of a set S in R” is the set of all points in R* that do not
belong to S. For example, the complement of the set of points (x, y) in R? such
that x > O is the set of points for which x < (. A set is said to be closed if its
complement is open. Typically, sets defined by nonstrict inequalities (using “>"
and “<”) are closed. Closed intervals are closed sets in R. Since the whole space
and the empty set are both open in R* and are complements of each other, they are
also both closed. They are the only sets that are both open and closed.

A point P is called a boundary point of a set S if every neighbourhood of P
contains both points in § and points in $¢. The boundary, bdry(S), of a set S is
the set of all boundary points of S. For example, the boundary of the closed disk
x? 4+ y* < 1in R? is the circle x> 4+ y* = 1. A closed set contains all its boundary
points. An open set contains none of its boundary points.

A point P is an interior point of a set S if it belongs to S but not to the
boundary of S. P is an exterior point of § if it belongs to the complement of S but
not to the boundary of S. The interior, int(S), and exterior, ext(S), of S consist of
all the interior points and exterior points of S, respectively. Both int(S) and ext(S)
are open sets. If S is open, then int(S) = S. If S is closed, then ext(S) = S¢. See
Figure 10.10.
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|Exercises 10.1

Find the distance between the pairs of points in Exercises 1-4. 20. x> +z2 =4 21 z=y?
1. (0,0,0)and 2, —1,-2) 2. (~1,~1,~1)and 2. 22 /x2+ 2 2. x4+2y+32=6
(1,11 In Exercises 24-32, describe (and sketch if possible) the set of
3. (1,1,0) and (0,2, =2) 4. (3,8, —1) and points in R? that satisty the given pair of equations or
(=2,3,-6) inequalities.
5. What is the shortest distance from the point (x, y, z) to _ _
. x=1 x=1
(a) the xy-plane? (b) the x-axis? 24. { y=2 25. V=2
6. Show that the triangle with vertices (1, 2, 3), (4, 0, 5), and ) »
(3, 6,4) has aright angle. 26 +yr+2 =4 27, X Tyt =
. . . , . "lz=1 B B "
7. Find the angle A in the triangle with vertices
A=2,—-1,-1),B=(0,1,-2),and C = (1, -3, 1). 28, {x2+y2+12=4 29, {x2+y2=1
8. Show that the triangle with vertices (1, 2, 3), (1, 3, 4), and x2+72=1 7=2Xx
0, 3, 3) is equilateral.
(, Jiseq X . . . 30 yzx 31 24y <1
9. Find the area of the triangle with vertices (1, 1, 0), (1,0, 1), “lz<y N>y
and (0, 1, 1). 5 5 5 -
10. What is the distance from the origin to the point 32. { * -12— Y -{2_ =1
(I,1,..., 1) inR"? VX t+y =z
11. What is the distance from the point (1, 1, ..., 1) in n-space In Exercises 33-36, specify the boundary and the interior of the

plane sets S whose points (x, y) satisfy the given conditions. Is

to the closest point on the x-axis? ;
P S open, closed, or neither?

In Exercises 12-23, describe (and sketch if possible) the set of

points in R? that satisfy the given equation or inequality. 3B.0<x24+y’ <1 4. x>0, y<0

12. ; = 13. y > —1 Box+y=1 36. |x|+ |yl <1

14, - = x 15 x+y=1 In Exercises 3740, specify the boundary and the interior of the
N sets S in 3-space whose points (x, y, z) satisfy the given

16. 12 + y2 +72=4 conditions. Is S open, closed, or neither?

17. x— D>+ (y+22+(z—-3)2=4 3. 1<x?+y°+72<4  38.x>0, y>1 z<2

18, 24y 472=22 19. y2 472 <4 39 x-22+(-22=0 40. x>+y? <1, y+z>2

A vector is a quantity that involves both magnitude (size or length) and direction.
For instance, the velocity of a moving object involves its speed and direction of
motion, so is a vector. Such quantities are represented geometrically by arrows
(directed line segments) and are often actually identified with these arrows. For

B instance, the vector A B is an arrow with tail at the point A and head at the point B.
v In print, such a vector is usually denoted by a single letter in boldface type,

A
Figure 10.11 The vector v = /47

v=AB.

(See Figure 10.11.) In handwriting, an arrow over a letter (v = ﬁ) can be used
to denote a vector. The magnitude of the vector v is the length of the arrow and is

—>
denoted |v| or |AB].
While vectors have magnitude and direction, they do not generally have posi-

tion, that is, they are not regarded as being in a particular place. Two vectors, u and
v, are considered equal if they have the same length and the same direction, even
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X

Figure 10.12 ﬁ = ﬁ

Y4
X=(p—a.q—b)

0 " x
Figure 10.13 Components of a
vector
Figure 10.14

(a) Vector addition

(b) Scalar multiplication

if their representative arrows do not coincide. The arrows must be parallel, have
the same length, and point in the same direction. In Figure 10.12, for example, if

ABYX is a parallelogram, then AB = XY.

For the moment, we consider plane vectors, that is, vectors whose representative
arrows lie in a plane. If we introduce a Cartesian coordinate system into the plane,
we can talk about the x and y components of any vector. If A = (a,b) and
P = (p, q), as shown in Figure 10.13, then the x and y components of AP are,
respectively, p — a and ¢ — b. Note that if O is the origin and X is the point
(p—a,q —b),then

AP =V (p—a)’ + (q— b = |0OX|
-5 _ slope of 0X.

p—a

slope of AP =

Hence AP = OX. In general, two vectors are equal if and only if they have the
same x components and y components.

(a) (b)

There are two important algebraic operations defined for vectors: addition and
scalar multiplication.

Vector addition

Given two vectors u and v, their sum u + v is defined as follows. If an arrow
representing v is placed with its tail at the head of an arrow representing u,
then an arrow from the tail of u to the head of v represents u+v. Equivalently,
if u and v have tails at the same point, then u + v is represented by an arrow
with its tail at that point and its head at the opposite vertex of the parallelogram
spanned by u and v. This is shown in Figure 10.14(a).

Scalar multiplication

If v is a vector and ¢ is a real number (also called a scalar), then the scalar
multiple ¢v is a vector with magnitude |¢| times that of v and direction the
same as v if + > 0, or opposite to that of vif t < 0. See Figure 10.14(b). If
t = 0, then tv has zero length and therefore no particular direction. It is the
zero vector, denoted 0.




Figure 10.15 The components of a
sum of vectors or a scalar multiple of a
vector is the same sum or multiple of
the corresponding components of the
vectors

y

(x, )

r=xi+yj

1

Figure 10.16 Any vector is a linear
combination of the basis vectors

X
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Suppose that u has components a and b and that v has components x and y.
Then the components of u + v are a + x and b + y, and those of tv are tx and ty.
See Figure 10.15.

y )’w

In R? we single out two particular vectors for special attention. They are
(i) the vector i from the origin to the point (1, 0), and
(ii) the vector j from the origin to the point (0, 1).
Thus, i has components 1 and 0, and j has components 0 and 1. These vectors are

called the standard basis vectors in the plane. The vector r from the origin to the
point (x, y) has components x and y and can be expressed in the form

r=(x,y) = xi+ yj.

In the first form we specify the vector by listing its components between angle
brackets; in the second we write r as a linear combination of the standard basis
vectors i and j. (See Figure 10.16.) The vector r is called the position vector of
the point (x, y). A position vector has its tail at the origin and its head at the point
whose position it is specifying. The length of r is [r| = /xZ + yZ.

—>
More generally, the vector AP from A = (a, b) to P = (p, g) in Figure 10.13
can also be written as a list of components or as a linear combination of the standard
basis vectors:

wr- . .
AP =(p—a,q—-b)y=(p—a)i+ (¢ —b)j.

Sums and scalar multiples of vectors are easily expressed in terms of components.
If u=ui+ uzj and v = v;i 4 v,j, and if 7 is a scalar (i.e., a real number), then

u+v=(u +v)i+ (@ +wn)j
= (tupi+ (tuz)j.

The zero vector is 0 = 0i + 0j. It has length zero and no specific direction. For any
vector u we have Ou = 0. A unit vector is a vector of length 1. The standard basis
vectors i and j are unit vectors. Given any nonzero vector v, we can form a unit
vector V in the same direction as v by multiplying v by the reciprocal of its length
(a scalar):

= (1)
V= — iV
vl
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IEENTIER 1A =(2,—1), B=(-1,3),and C = (0, 1), express each of the

following vectors as a linear combination of the standard basis vectors:
@ AB (0 BC ()AC ()AB+BC (e)2AC—3Ch
(f) a unit vector in the direction of A_é .

Solution

(@) AB = (—1 —2)i+ 3 = (=1))j = ~3i + 4]

®) BC=(0— (=1)i+1-3)j=i—2j

() AC = (0= )i+ (1 — (1) = ~2i +2j

(@) AB+ BC = AC = —2i + 2

(€) 2AC —3CB = 2(=2i + 2j) — 3(—i + 2j) = —i — 2

—
(f) A unit vector in the direction of AB is
|AB|

Implicit in the above example is the fact that the operations of addition and scalar
multiplication obey appropriate algebraic rules, such as

ut+v=v+u,
+v)y+w=u+(v+w),
u—v=u+(—Dyv,
t(u+v) =ru+tv.

Vectors in 3-Space

The algebra and geometry of vectors described here extends to spaces of any number
of dimensions; we can still think of vectors as represented by arrows, and sums and
scalar multiples are formed just as for plane vectors.

Given a Cartesian coordinate system in 3-space, we define three standard basis
vectors, i, j, and k, represented by arrows from the origin to the points (1, 0, 0),
(0, 1,0), and (0, 0, 1), respectively. (See Figure 10.17.) Any vector in 3-space can
be written as a linear combination of these basis vectors; for instance, the position
vector of the point (x, y, z) is given by

r = xi+ yj+ zk.

We say that r has components x, y, and z. The length of r is
Figure 10.17 The standard basis Ir| = /x2 + y2 4+ 22,
vectors i, j, and k

If Py = (x1,y1, z1) and P» = (x3, ¥2, z0) are two points in 3-space, then the vector

—_—>
v = PP, from P; to P, has components x» — x, y, — y1, and zo — z; and is
therefore represented in terms of the standard basis vectors by

—_— . .
V=P P =(x—xDi+ (y2 —yDj+ (22 — 21k
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Ifu=2i+j—2kandv =3i-2j—Kk, findu+v,u—v,3u—2v,
|u|, |v|, and a unit vector @ in the direction of u.

Solution
U+v=02+3)i+1-2)j+(—2— Dk=5i—j—3k
u—v=02-3)i+10+2)j+(-2+Dk=—-i+3j—k
J0—2v=(6—6)i+G+4j+ (—6+2)k=7j -4k
u=va+1+4=3 |v[=v/9+4+1=14

/1 2, 12,
i=|—ju=-i+-j— -k
lul 3773173

_u

The following example illustrates the way vectors can be used to solve problems
involving relative velocities. If A moves with velocity v 5 relative to B, and B
moves with velocity v ¢ relative to C, then A moves with velocity v 4. ¢ relative
to C, where

VArel¢ = VArelB + VBrelC-

m An aircraft cruises at a speed of 300 km/h in still air. If the wind
is blowing from the east at 100 km/h, in what direction should the aircraft head in
order to fly in a straight line from city P to city Q, 400 km north northeast of P?
How long will the trip take?

Solution The problemis two-dimensional, so we use plane vectors. Let us choose
our coordinate system so that the x- and y-axes point east and north, respectively.
Figure 10.18 illustrates the three velocities that must be considered. The velocity
of the air relative to the ground is

Vair rel gromnd = —100 i

Y If the aircraft heads in a direction making angle 8 with the positive direction of the
x-axis, then the velocity of the aircraft relative to the air is

Vaircraft rel air = 300cos81i+ 300siné j.

300(cos 8i + singj) | Thus, the velocity of the aircraft relative to the ground is

67.5°
6 Vaitcraft rel ground = Vaircraft rel air 1+ Vair rel ground

“—Tomi p = (300 cos@ — 100) i + 300siné j.

Figure 10.18  Velocity diagram for | we want this latter velocity to be in a north-northeasterly direction, that is, in the

the aircraft in Example 3 direction making angle 37/8 = 67.5° with the positive direction of the x-axis.
Thus we will have

Vaircraft rel ground = ¥ [(c0s67.5%) i+ (sin 67.5°) j],

where v is the actual groundspeed of the aircraft. Comparing the two expressions
fOr Vaircraft rel ground WC obtain
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300cos8 — 100 = v cos 67.5°
300sin@ = v sin67.5°.

Eliminating v between these two equations we get

300 cos 8 sin67.5° — 300 sinf cos67.5° = 100 sin 67.5°,
or

3 sin(67.5° — 0) = sin 67.5°.

Therefore, the aircraft should head in direction 6 given by
1 .
f = 67.5° — arcsin <§ sin 67.5°) ~ 49.56°,

that is, 49.56° north of east. The groundspeed is now seen to be
v = 300sin#/ sin 67.5° ~ 247.15 km/h.

Thus, the 400 km trip will take about 400/247.15 = 1.618 hours, or about 1 hour

and 37 minutes.
|

Hanging Cables and Chains

When it is suspended from both ends and allowed to hang under gravity, a heavy
cable or chain assumes the shape of a catenary curve, which is the graph of the
hyperbolic cosine function. We will demonstrate this now, using vectors to keep
track of the various forces acting on the cable.

Suppose that the cable has line density & (units of mass per unit length) and
hangs as shown in Figure 10.19. Let us choose a coordinate system so that the
lowest point L on the cable is at (0, yo); we will specify the value of y, later. If
P = (x,y) is another point on the cable, there are three forces acting on the arc
L P of the cable between L and P. These are all forces that we can represent using
horizontal and vertical components.

(i) The horizontal tension H = —Hi at L. This is the force that the part of
the cable to the left of L exerts on the arc LP at L.

(i1) The tangential tension T = T,i + T,,j. This is the force the part of the
cable to the right of P exerts on arc LP at P.

(iii) The weight W = —§gsj of arc L P, where g is the acceleration of gravity
and s is the length of the arc L P.

Since the cable is not moving, these three forces must balance; their vector sum
must be zero:

T+H+W=0
(Th = H)i+ (T, — 3gs5)j =0



Figure 10.19 A hanging cable and
the forces acting on arc L P
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Thus 7, = H and T, = 8gs. Since T is tangent to the cable at P, the slope of the
cable there is

dy T, 4gs

dx T, H - as

where @ = 8g/H is a constant for the given cable. Differentiating with respect to
x and using the fact, from our study of arc length, that

ds dy 2
| =y
dx + <dx) ’

we obtain a second-order differential equation,

d?y ds dy 2
a2 a1 e
dxr  Yax T + <dx> ’

to be solved for the equation of the curve along which the hanging cable lies. The
appropriate initial conditions are y = yg and dy/dx = 0 at x = 0.

Since the differential equation depends on dy/dx rather than y, we substitute
m(x) = dy/dx and obtain a first-order equation for m:

@ =av1+m?.

dx

This equation is separable; we integrate it using the substitution m = sinh u:

1
[ sz in= [ e
h
/du:/—cosu—duzax—l-cl
v/ 1 + sinh? u

sinh'm=u=ax+C
m = sinh(ax + Cy).
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Since m = dy/dx = 0at x = 0, we have 0 = sinh C;, so C; = 0 and

d

& _ m = sinh(ax).

dx
This equation is easily integrated to find y. (Had we used a tangent substitution
instead of the hyperbolic sine substitution for m we would have had more trouble
here.)

1
y = — cosh(ax) + Cs.
a
If we choose yo = y(0) = 1/a, then, substituting x = 0 we will get C, = 0. With

this choice of yg, we therefore find that the equation of the curve along which the
hanging cable lies is the catenary

y= g coshian).

Remark If a hanging cable bears loads other than its own weight, it will assume
a different shape. For example, a cable supporting a level suspension bridge whose
weight per unit length is much greater than that of the cable will assume the shape
of a parabola. See Exercise 34 below.

The Dot Product and Projections

There is another operation on vectors in any dimension by which two vectors are
combined to produce a number called their dot product.

The dot product of two vectors

Given two vectors, U = u i+ usj and v = v1i + vpj in R2, we define their dot
productuev to be the sum of the products of their corresponding components:

uev=uiv; + urvs.
The terms scalar product and inner product are also used in place of dot
product. Similarly, for vectors u = u i + u2j + usk and v = v)i + voj + 13k

in R3,

uev=ujv+ Uavz + usvs.

The dot product has the following algebraic properties, easily checked using the
definition above:

Uev=veu (commutative law),
ue(v4+w)=ueviuew (distributive law),
(fu)ev=ue(tv) =t(uev) (forreal 1),

ueu=|u?

The real significance of the dot product is shown by the following result, which
could have been used as the definition of dot product:




Figure 10.20
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If 4 is the angle between the directions of w and v (0 < 6 < m), then
uev=lullv|cosf.

In particular, u e v = 0 if and only if uw and v are perpendicular. (Of course, the zero
vector is perpendicular to every vector.)

PROOF Refer to Figure 10.20 and apply the Cosine Law to the triangle with the
arrows u, v, and u — v as sides.

lul®> + |v|> = 2ju| |v| cosf = u—vP?=@u—v)e(u—v)
=ue(u—v)—ve(u—v)
—ueU—UeV—VeUu-+VeyV

=u?+|v]>=2uev

Hence |uj|v| cos@ = u e v, as claimed.

EY N W  Find the angle 6 between the vectorsu = 2i +j — 2k and v =
3i—-2j— k.

Solution Solving the formula u e v = |u||v| cosé for 8, we obtain

0 =cos ! XY _ cos! ((2)(3) +()(=2) + (—2)(—1))
lul|v N 3x/ﬁ
= cos™! \/%_4 ~ 57.69°.

It is sometimes useful to project one vector along another. We define both scalar
and vector projections of u in the direction of v:

Scalar and vector projections

The scalar projection s of any vector u in the direction of a nonzero vector v
is the dot product of u with a unit vector in the direction of v. Thus, it is the
number

ueyv

s = = |u| cosé,

M

where 0 is the angle between u and v.

The vector projection, uy, of u in the direction of v (see Figure 10.21) is the
scalar multiple of a unit vector v in the direction of v, by the scalar projection
of u in the direction of v, that is,

Uev | uev
vV =

vector projection of u along v =u, = VST
v v
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v

Figure 10.21 The scalar projection
s and the vector projection uy of vector
u along vector v

Note that |s| is the length of the line segment along the line of v obtained by dropping
perpendiculars to that line from the tail and head of u. (See Figure 10.21.) Also, s
is negative if 6 > 90°.

It is often necessary to express a vector as a sum of two other vectors parallel
and perpendicular to a given direction.

m Express the vector 3i 4 j as a sum of vectors u + v, where u is
parallel to the vector i + j and v is perpendicular to u.

Solution

Method I (Using vector projection) Note that u must be the vector projection of
3i + j in the direction of i + j. Thus,

Gi+je+])

U= —"r""5
i+l

v=3i+j—u=i—j.

4
i+ = §(i+j) =2i+2j

Method II (From basic principles) Since u is parallel to i+ j and v is perpendicular
to u, we have

u=tGi+j) and ve(i+j) =0,

for some scalar r. We want u + v = 3i 4 j. Take the dot product of this equation
with i + j:

ve(i+j)+ve(i+j)=Ci+je(i+}))
ti+je+j)+0=4

Thus 2t = 4, so t = 2. Therefore,

u=2i+2j and v=3i+j—u=i-j.

Vectors in n-Space
All the above ideas make sense for vectors in spaces of any dimension. Vectors in
R* can be expressed as linear combinations of the » unit vectors

e from the origin to the point (1,0,0,...,0)
ez from the origin to the point (0, 1,0,...,0)

€n from the origin to the point (0,0,0,...,1).

These vectors constitute a standard basis in R*. The n-vector X with components
X1, X2, ..., Xp 18 expressed in the form

X = Xx1€1 + x2€3 + -+ - + x,€4.
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The length of X is |x| = v/x;2 4+ x,2 + - - - + x,2. The angle between two vectors x

andy is
X
6 = cos™! °y ,
x|y
where

Xey=xiy1+xoy2+ -+ Xn¥n-

We will not make much use of n-vectors for n > 3 but you should be aware that
everything said up until now for 2-vectors or 3-vectors extends to n-vectors.

| Exercises 10.2

1. LetA=(-1,2), B=(2,0), C =(1,-3), D=1(0,49).
Express each of the following vectors as a linear
combination of the standard basis vectors i and j in R2.

(a) AB, (b) BA, (c)AC, (d)BD, (e) DA,
(f) AB — BC, (2) AC —24B +3CD,

AB+AC + AD
W =5
In Exercises 2-3, calculate the following for the given vectors u
and v:
(@ u+tv,
(b) the lengths |u| and |v/|,

u-—yv, 2u — 3v,

(¢c) unit vectors u and v in the directions of u and v,
respectively,

(d) the dot productu e v,
(e) the angle between u and v,
(f) the scalar projection of u in the direction of v,
g) the vector projection of v along u.
2u=i—jandv=j+2k
3. u=3i4+4j—5Skandv=23i-4j— 5k

4. Use vectors to show that the triangle with vertices (-1, 1),
(2, 5), and (10, —1) is right-angled.

In Exercises 5-8, prove the stated geometric result using vectors.

5. The line segment joining the midpoints of two sides of a
triangle is parallel to and half as long as the third side.

6. If P, Q, R, and S are midpoints of sides AB, BC, CD, and
DA, respectively, of quadrilateral ABC D, then PQRS is a
parallelogram.

7. The diagonals of any parallelogram bisect each other.

8. The medians of any triangle meet in a common point. (A
median is a line joining one vertex to the midpoint of the

10.

= 11,

12.

13.

14.

15.

16.

opposite side. The common point is the centroid of the
triangle.)

. A weather vane mounted on the top of a car moving due

north at 50 km/h indicates that the wind is coming from the
west. When the car doubles its speed, the weather vane
indicates that the wind is coming from the northwest. From
what direction is the wind coming, and what is its speed?

A straight river 500 m wide flows due east at a constant
speed of 3 km/h. If you can row your boat at a speed of

5 km/h in still water, in what direction should you head if
you wish to row from point A on the south shore to point B
on the north shore directly north of A? How long will the
trip take?

In what direction should you head to cross the river in
Exercise 10 if you can only row at 2 km/h, and you wish to
row from A to point C on the north shore, £ km downstream
from B. For what values of k is the trip not possible?

A certain aircraft flies with an airspeed of 750 km/h. In what
direction should it head in order to make progress in a true
easterly direction if the wind is from the northeast at

100 km/h? How long will it take to complete a trip to a city
1,500 km from its starting point?

For what value of ¢ is the vector 2¢i + 4 — (10 + 1)k
perpendicular to the vector i + £j + k?

Find the angle between a diagonal of a cube and one of the
edges of the cube.

Find the angle between a diagonal of a cube and a diagonal
of one of the faces of the cube. Give all possible answers.

(Direction cosines) If a vector u in R? makes angles «, g,
and y with the coordinate axes, show that

0 = cosai + cos Bj + cos yk
is a unit vector in the direction of u, so

cos? o + cos? B + cos? y = 1. The numbers cos «, cos B,
and cos y are called the direction cosines of .
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17.

18.

19.

20.

21.

InE
W =
22.
23.
24,

25.

26.

27.

28.

29.
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Find a unit vector that makes equal angles with the three
coordinate axes.

Find the three angles of the triangle with vertices (1, 0, 0),
(0.2,0), and (0, 0, 3).

If r| and r; are the position vectors of two points, P; and
P>, and A is a real number, show that

r=(1—-Xry+ir

is the position vector of a point P on the straight line joining
Py and Pp. Whereis Pif A = 1/27if A =2/37 if L, = —17
it =27

Let a be a nonzero vector. Describe the set of all points in
3-space whose position vectors r satisfy aer = 0.

Let a be a nonzero vector, and let b be any real number.

Describe the set of all points in 3-space whose position

vectors rsatisfy aer = b,

xercises 2224, u = 2i+j — 2k, v =i+ 2j — 2k, and

2i —2j+k.

Find two unit vectors each of which is perpendicular to u

and v.

Find a vector x satisfying the system of equations xeu =9,

Xev=4 Xew=0.

Find two unit vectors each of which makes equal angles

with u. v, and w.

Find a unit vector that bisects the angle between any two

nonzero vectors u and v.

Given (wo nonparallel vectors u and v, describe the set of all

points whose position vectors r are of the form

r = Au+ uv, where X and y are arbitrary real numbers.

(The triangle inequality) Let u and v be two vectors.

(a) Show that [u+v|> = |u]”> +2uev+ [vi2.

(b) Show thatue v < |u]|v|.

(¢) Deduce from (a) and (b) that ju + v| < |u| + |v].

(a) Why is the inequality in Exercise 27(c) called a triangle
incquality?

(b) What conditions on u and v imply that
[u+vl=lu| +[v|]?

(Orthonormal bases) Let u = _%i + %j, v= %i — %j, and

w = k.

(a) Show that ju| = |v|] =|w| =1 and
uev=1uew=vew = (. The vectors u, v, and w are

mutually perpendicular unit vectors and as such are said
to constitute an orthonormal basis for R,

8 3s.

(b) If r = xi + yj + zk, show by direct calculation that

r=(reu)u+ (rev)v+ (reww.

30. Show that if u, v, and w are any three mutually
perpendicular unit vectors in R and r = au + bv + cw,
thena =reu, b =rev,andc =rew.

31. (Resolving a vector in perpendicular directions) If ais a
nonzero vector and w is any vector, find vectors u and v such
that w = u + v, u is parallel to a, and v is perpendicular to a.

32. (Expressing a vector as a linear combination of two other
vectors with which it is coplanar) Suppose that u, v, and r
are position vectors of points U, V, and P, respectively, that
u is not parallel to v, and that P lies in the plane containing
the origin, U and V. Show that there exist numbers A and 1
such that r = Au + wv. Hint: resolve both v and r as sums
of vectors parallel and perpendicular to u as suggested in
Exercise 31.

* 33, Given constants r, s, and ¢, with 7 # 0 and s # 0, and given
a vector a satisfying |a|? > 4rst, solve the system of
equations

rx+sy=a
Xey=t1

for the unknown vectors x and y.
Hanging cables

34. (A suspension bridge) If a hanging cable is supporting
weight with constant horizontal line density (so that the
weight supported by the arc L P in Figure 10.19 is 6gx
rather than §gs, show that the cable assumes the shape of a
parabola rather than a catenary. Such is likely to be the case
for the cables of a suspension bridge.

At a point P, 10 m away horizontally from its lowest point
L, a cable makes an angle 55° with the horizontal. Find the
length of the cable between L and P.

36. Calculate the length s of the arc L P of the hanging cable in
Figure 10.19 using the equation y = (1/a) cosh(ax)
obtained for the cable. Hence, verify that the magnitude
T = |T| of the tension in the cable at any point P = (x, y)
isT = é6gy.

. A cable 100 m long hangs between two towers 90 m apart so
that its ends are attached at the same height on the two
towers. How far below that height is the lowest point on the
cable?
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Figure 10.22 uXxv is perpendicular
to both u and v and has length equal to
the area of the shaded parallelogram

@REMQ

There is defined, in 3-space only, another kind of product of two vectors called a
cross product or vector product, and denoted uxv.

For any vectors u and v in R?, the cross product uxv is the unique vector
satisfying the three conditions:

(i) Xv)eu=0 and @uXVv)ev=0,
(i) Jluxv| = |a||v| sinf, where 8 is the angle between u and v, and

(iii) u, v, and ux v form a right-handed triad.

If u and v are parallel, condition (ii) says that ux v = 0, the zero vector. Otherwise,
through any pointin R? there is a unique straight line that is perpendicular to both u
and v. Condition (i) says that u X v is parallel to this line. Condition (iii) determines
which of the two directions along this line is the direction of ux v; a right-handed
screw advances in the direction of ux v if rotated in the direction from u toward
v. (This is equivalent to saying that the thumb, forefinger, and middle finger of the
right hand can be made to point in the directions of u, v, and ux v, respectively.)

If u and v have their tails at the point P, then u X v is normal (i.e., perpendicular)
to the plane through P in which u and v lie and, by condition (ii), uX v has length
equal to the area of the parallelogram spanned by u and v. (See Figure 10.22.)
These properties make the cross product very useful for the description of tangent
planes and normal lines to surfaces in R3.

The definition of cross product given above does not involve any coordinate
system and therefore does not directly show the components of the cross product
with respect to the standard basis. These components are provided by the following
theorem:

Components of the cross product
If u = u1i + uzj + usk and v = vi + v2j + v3K, then

WXV = (uovs ~ usvp)i + (usvr — w n3)j + (wivz — uzvpk.

PROOF First, we observe that the vector -
W = (u2v3 — u3v)i + (u3vy — u1v3)j + (u1v2 — uzvk
is perpendicular to both u and v since
Ue W =u(Uv3 — U3V2) + us(U3vy ~ u1v3) + uz(u vz — upvy) =0,

and similarly ve w = 0. Thus ux v is parallel to w. Next, we show that w and u xv
have the same length. In fact,

2 2 2 2
W™ = (u2v3 — u3v2)” + (w3v1 — u1v3)" + (U1v2 — Uovy)
= udv? + uiv3 — 2uyvsusvs + wdv? + ulvi

2.2 2.2
— 2uzviugvs + uyv; + usv; — 2ugvausvy,
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while

luxv|? = |u|?|v|*sin @
= |u?|v|* (1 — cos’ 6)
= lul’|v* — (wev)’
= 3 + 13+ u) (W} + 3 + v3) — (urvy + uzvs + uzv3)’
= u%v% + u%v% + u%v% + u%vf + u%v% + u%v% + u%vf + u%vg + u%v%

— u%vf — u%v% — u%v% — 2U 1 V1UrV2 — 2U 1V U3V3 — 2U2V U3 V3

2
= |w|”.

Since w is parallel to, and has the same length as, uXv, we must have either
uxXv=woruxv = —w. It remains to be shown that the first of these is the correct
choice. To see this, suppose that the triad of vectors u, v, and w is rigidly rotated
in 3-space so that u points in the direction of the positive x-axis and v lies in the
upper half of the xy-plane. Then u = u;i, and v = v;i 4 v,j, where u; > 0 and
vy > 0. By the “right-hand rule” uX v must point in the direction of the positive
z-axis. But w = u,v;k does point in that direction, so uXx v = w, as asserted.

The formula for the cross product in terms of components may seem awkward and
asymmetric. As we shall see, however, it can be written more easily in terms of a
determinant. We introduce determinants later in this section.

m (Calculating cross products)

(a) ixi=0, ixj=Kk, jxi=—k,
ixj=0, jxk =i, kxj=—Ii,
kxk =0, kXi=j, ixk = —j.

(b) (2i+ j— 3k) X (—2j+ 5k)
= ((WG) = (=2(=N)i+ ((=3)©0) — 2)(5))j + (2(=2) = (DHO)k
= —i— 10j — 4k.

The cross product has some, but not all of the properties we usually ascribe to
products. We summarize its algebraic properties as follows:

Properties of the cross product

If u, v, and w are any vectors in IR3, and ¢ is a real number (a scalar), then
(i) uxu =10,

(i) UX v = —vXu, (The cross product is anticommutative.)

(i) (W4 V)XW =UXWH VXW,

vy ux(v4+ W) =uxXv+uxw,

V) (o) xv=ux{v) =1(uxv),

(vi) we(uX V)= ve(uxv)=0.

These identities are all easily verified using the components or the definition of the
cross product or by using properties of determinants discussed below. They are




Figure 10.23

Figure 10.24 WARNING: This
method does not work for 4x4 or
higher-order determinants!
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left as exercises for the reader. Note the absence of an associative law. The cross
product is not associative. (See Exercise 21 at the end of this section.) In general,

uX (VXW) # (UXV)XWw.

Determinants

In order to simplify certain formulas such as the component representation of
the cross product, we introduce 2 x 2 and 3 x 3 determinants. General n x n
determinants are normally studied in courses on linear algebra; we will encounter
them in Section 10.6. In this section we will outline enough of the properties of
determinants to enable us to use them as shorthand in some otherwise complicated
formulas.

A determinant is an expression that involves the elements of a square array
(matrix) of numbers. The determinant of the 2x 2 array of numbers

a b
c d

is denoted by enclosing the array between vertical bars, and its value is the number
ad — bc:

a b

d}:adwbc.

This is the product of elements in the downward diagonal of the array minus the
product of elements in the upward diagonal as shown in Figure 10.23. For example,

1 2
3 4

' =D& -G =-2

Similarly, the determinant of a 33 array of numbers is defined by

a b
d e’ f|=uaei+bfg+cdh—ygec—hfa—~idb.
g h i

Observe that each of the six products in the value of the determinant involves exactly
one element from each row and exactly one from each column of the array. As such,
each term is the product of elements in a diagonal of an extended array obtained by
repeating the first two columns of the array to the right of the third column, as shown
in Figure 10.24. The value of the determinant is the sum of products corresponding
to the three complete downward diagonals minus the sum corresponding to the three
upward diagonals. With practice you will be able to form these diagonal products
without having to write the extended array.

If we group the terms in the expansion of the determinant to factor out the
elements of the first row, we obtain

a b c
d e f|=alei— fh)—b(di— fg)+ c(dh — eg)
g h i
_le fl_ .14 f d e
=y b}g i+c’g |
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The 2 x 2 determinants appearing here (called minors of the given 3 x 3 determinant)
are obtained by deleting the row and column containing the corresponding element
from the original 3x3 determinant. This process is called expanding the 3x3
determinant in minors about the first row.

Such expansions in minors can be carried out about any row or column. Note
that a minus sign appears in any term whose minor is obtained by deleting the ith
row and jth column, where i + j is an odd number. For example, we can expand
the above determinant in minors about the second column as follows:

a b ¢
def:—b.d{+eac—hfl;
¢ b i g g

= —bdi + bfg + eai —ecg — haf + hed.

(Of course, this is the same value as the one obtained previously.)

|_Example 2 |

1 4 -2
‘ -3 1 0
2 2 =3

4 -2
2 -3

ot et 3

2 =3

=3(-8)+1=-23.

We expanded about the second row; the third column would also have been a good
choice. (Why?)

Any row (or column) of a determinant may be regarded as the components of a
vector. Then the determinant is a linear function of that vector. For example,

a b c a b ¢ a b c
d e f =s|d e fl+t|d e f
sx+tl sy+tm sz+tn X y z I m n

because the determinant is a linear function of its third row. This and other properties
of determinants follow directly from the definition. Some other properties are
summarized below. These are stated for rows and for 3 x 3 determinants, but
similar statements can be made for columns and for determinants of any order.

Properties of determinants

(i) If two rows of a determinant are interchanged, then the determinant
changes sign:

d e f a'b ¢
a b c¢c|l==ld e f
g h i g ho i




C=@0-11

A=(,1,0)

Figure 10.25

‘B=(3,0,2)
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(ii) If two rows of a determinant are equal, the determinant has value O:

e >
Il
e

08 R R
ey

(iii) If a multiple of one row of a determinant is added to another row, the
value of the deterniinant remains unchanged:

a b ' a b ¢
d+ta e+th f+tc|=|d e f|.
g h i g h i

The Cross Product as a Determinant

The elements of a determinant are usually numbers because they have to be multi-
plied to get the value of the determinant. However, it is possible to use vectors as
the elements of one row (or column) of a determinant. When expanding in minors
about that row (or column), the minor for each vector element is a number that
determines the scalar multiple of the vector. The formula for the cross product of

u=uji+uj+uk and v=wi+wvj+ vk

presented in Theorem 2 can be expressed symbolically as a determinant with the
standard basis vectors as the elements of the first row:

1 j k i u u
‘ U . u . U
uxv={uy us uszl=|"% Bli- | B "2k
Uy U3 Vi Vs 1 v
ViU

The formula for the cross product given in that theorem is just the expansion of this
determinant in minors about the first row.

m Find the area of the triangle with vertices at the three points A =

1,1,0), B =(3,0,2),and C = (0, —1, 1).

Solution Two sides of the triangle (Figure 10.25) are given by the vectors:
AB=2i—j+2k and AC=—i—2j+k

The area of the triangle is half the area of the parallelogram spanned by AB and

K_C) . By the definition of cross product, the area of the triangle must therefore be

1 — — 1 i ik
5|AB><AC|=§| 2 -1 2]
-1 -2 1
1

1 5
=3 13i — 4j — 5Kk| = 5«/9+ 16 + 25 = Eﬁsquare units.
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Figure 10.26

Vectors and Coordinate Geometry in 3-Space

A parallelepiped is the three-dimensional analogue of a parallelogram. It is a solid
with three pairs of parallel planar faces. Each face is in the shape of a parallelogram.
A rectangular brick is a special case of a parallelepiped in which nonparallel faces
intersect at right angles. We say that a parallelepiped is spanned by three vectors
coinciding with three of its edges that meet at one vertex. (See Figure 10.26.)

(F'ETL YW Find the volume of the parallelepiped spanned by u, v, and w.

Solution The volume of the parallelepiped is equal to the area of one of its faces,
say the face spanned by v and w, multiplied by the height of the parallelepiped
measured in a direction perpendicular to that face. The area of the face is [vXw|.
Since vXw is perpendicular to the face, the height / of the parallelepiped will be
the absolute value of the scalar projection of u along v X w. If 6 is the angle between
u and v X w, then the volume of the parallelepiped is given by

Volume = [u|| vXW||cosf| = |u e (vXW)| cubic units.

The quantity u e (vX w) is called the scalar triple product of the vectors u,
v, and w.

The scalar triple product is easily expressed in terms of a determinant. If
u = uji + uyj + usk, and similar representations hold for v and w, then

U1 (2]
wy wy

Uy .U3
Wo-Wy

Vi U3
wy W3

ue (VXW) = u;

Uy Uz U3
Vi U2 U3
Wy Wy w3

The volume of the parallelepiped spanned by u, v, and w is the absolute value of
this determinant.

Using the properties of the determinant, it is easily verified that
ue (VXW)=ve(wXu)=we (UXv).

(See Exercise 18 below.) Note that u, v, and w remain in the same cyclic order in
these three expressions. Reversing the order would introduce a factor —1:

ue (VXW) = —ue(WXV).

Three vectors in 3-space are said to be coplanar if the parallelepiped they span has
zero volume; if their tails coincide, three such vectors must lie in the same plane.

u, v, and ware coplanar = &= une (vXw) =0
Uy Uz ujz
Vi V2 U3
wy . Wy w3

Nt =0.




Figure 10.27 The force on the
handle is 500 N in a direction directly
toward you
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Three vectors are certainly coplanar if any of them is 0, or if any pair of them is
parallel. If neither of these degenerate conditions apply, they are only coplanar if
any one of them can be expressed as a linear combination of the other two. (See
Exercise 20 below.)

Applications of Cross Products

Cross products are of considerable importance in mechanics and electromagnetic
theory, as well as in the study of motion in general. For example:

(a) The linear velocity v of a particle located at position r in a body rotating with
angular velocity 2 about the origin is given by v = £2Xxr. (See Section 11.2
for more details.)

(b) The angular momentum of a planet of mass m moving with velocity v in its
orbit around the sun is given by h = rxmyv, where r is the position vector of
the planet relative to the sun as origin. (See Section 11.6.)

(c) If aparticle of electric charge q is travelling with velocity v through a magnetic
field whose strength and direction are given by vector B, then the force that
the field exerts on the particle is given by F = gvXxB. The electron beam in a
television tube is controlled by magnetic fields using this principle.

(d) The torque T of a force F applied at the point P with position vector r about
another point Py with position vector ry is defined to be

T = PoP xF = (r — ry) XF.

This torque measures the effectiveness of the force F in causing rotation about
Py. The direction of T is along the axis through Py about which F acts to
rotate P.

An automobile wheel has centre at the origin and axle along the
y-axis. One of the retaining nuts holding the wheel is at position Py = (0, 0, 10).
(Distances are measured in centimetres.) A bent tire wrench with arm 25 c¢m long
and inclined at an angle of 60° to the direction of its handle is fitted to the nut in an
upright direction, as shown in Figure 10.27. If a horizontal force F = 500i newtons
(N) is applied to the handle of the wrench, what is its torque on the nut? What part
(component) of this torque is effective in trying to rotate the nut about its horizontal
axis? What is the effective torque trying to rotate the wheel?

Solution The nut is at position rp = 10k, and the handle of the wrench is at
position

r = 25c0s60°j + (10 4+ 25sin 60°)k ~ 12.5j + 31.65Kk.
The torque of the force F on the nut is

T=(@—-ry)XF
A (12.5j + 21.65k) x500i ~ 10,825j — 6,250k,
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which is at right angles to F and to the arm of the wrench. Only the horizontal com-
ponent of this torque is effective in turning the nut. This componentis 10,825 N-cm
or 108.25 N-m in magnitude. For the effective torque on the wheel itself, we have
to replace rg by 0, the position of the centre of the wheel. In this case the horizontal

torque is

that 1s, about 158.25 N-m.

31.65k x 5001 ~ 15,825j,

|Exercises 10.3

1. Calculteuxvifu=1i—-2j+3kandv=3i+j—4k.

. Calculsteuxvifu=j+2kandv=—-i—j+k

3. Find the area of the triangle with vertices (1, 2, 0), (1, 0, 2),

Veri

and (0, 3, 1).

. Find a unit vector perpendicular to the plane containing the

points (a, 0, 0), (0, b, 0), and (0, 0, ¢). What is the area of
the triangle with these vertices?

. Find a unit vector perpendicular to the vectors i + j and

j+ 2k

. Find a unit vector with positive k component that is

perpendicular to both 2i — j — 2k and 2i — 3j + k.

fy the identities in Exercises 7-11, either by using the

definition of cross product or the properties of determinants.

7.
9.
10.
11.
12.

13.
14.

uxu=10 8. uxv=—-vxu

(U+V)XW=UuXW+VXW
(fu)Xv=uX{(tv) =t(uxv)
ue (UXv)=ve(uxv)==0

Obtain the addition formula
sinfe — B) = sinw cos B — cos« sin 8

by examining the cross product of the two unit vectors

u = cos Bl +sin Bj and v = cosai + sinej. Assume

0 <o — B <m. Hint: regard u and v as position vectors.
What is the area of the parallelogram they span?

Ifu+ v+ w=0 show that uXv=vxw=wxu.

(Volume of a tetrahedron) A tetrahedron is a pyramid
with a triangular base and three other triangular faces. It has
four vertices and six edges. Like any pyramid or cone, its
volume is equal to %Ah, where A is the area of the base and
/1 is the height measured perpendicular to the base. If u, v,
and w are vectors coinciding with the three edges of a
tetrahedron that meet at one vertex, show that the
tetrahedron has volume given by

1 1 uyp U2 u3
Volume = 3 lae (VXW)| = 3 flvi v 3
wy wy w3

15.

16.

17.

18.

19.

20.

21.

22.

23.

Thus, the volume of a tetrahedron spanned by three vectors
is one-sixth of the volume of the parallelepiped spanned by
the same vectors.

Find the volume of the tetrahedron with vertices (1, 0, 0),
(1,2,0), (2,2,2), and (0, 3, 2).

Find the volume of the parallelepiped spanned by the
diagonals of the three faces of a cube of side a that meet at
one vertex of the cube.

For what value of k do the four points (1, 1, —1), (0, 3, =2,
(—=2,1,0), and (k, 0, 2) all lie in a plane?

(The scalar triple product) Verify the identities

ue (VXW)=ve(WXu) =we (uxv).

If uw e (vXWw) # 0 and x is an arbitrary 3-vector, find the
numbers A, u, and v such that

X = AU+ uv 4+ vw.

Ifue (vxXw) = 0but vXw # 0, show that there are
constants A and u such that

u=AvV+ uw.

Hint: use the result of Exercise 19 with u in place of x and
vXw in place of u.

Calculate uXx (v w) and (uxv) Xw, given that
u=1i42j+ 3k, v=2i—3j,and w = j — k. Why would
you not expect these to be equal?

Does the notation u e v X w make sense? Why? How about
the notation uXvxw?

(The vector triple product) The product ux (vx w) is
called a vector triple product. Since it is perpendicular to
v X Ww, it must lie in the plane of v and w. Show that

uX(vxXw)=(uew)v— (uevVv)Ww.
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Hinz: this can be done by direct calculation of the

components of both sides of the equation, but the job is 27. Show that the equation

much easier if you choose coordinate axes so that v lies

along the x-axis and w lies in the xy-plane.

24. If u, v, and w are mutually perpendicular vectors, show that (Fi+2j+3k)xx =1+5]
ux (vxw) = 0. What is u e (vXw) in this case?

25. Show thatuX (vXw) + vX(wxu) + wx(uxv) =0. has no solutions for the unknown vector x.
26. Find all vectors x that satisfy the equation ) 28. What condition must be satisfied by the nonzero vectors a
and b to guarantee that the equation aXx = b has a solution
(—i+2j+3k)xx =i+ 5j - 3k. for x? Is the solution unique?

A single equation in the three variables, x, y, and z, constitutes a single constraint
on the freedom of the point P = (x, y, z) to lie anywhere in 3-space. Such a
constraint usually results in the loss of exactly one degree of freedom and so forces
P to lie on a two-dimensional surface. For example, the equation

Xy +i=4

states that the point (x, y, z) is at distance 2 from the origin. All points satisfying
this condition lie on a sphere (i.e., the surface of a ball) of radius 2 centred at
the origin. The equation above therefore represents that sphere, and the sphere is
the graph of the equation. In this section we will investigate the graphs of linear
equations in three variables.

Planes in 3-Space
Let Py = (xo, Yo, 2o) be a point in R* with position vector

ro = xol + yoj + zok.

If n = Ai + Bj + Ck is any given nonzero vector, then there exists exactly one
plane (flat surface) passing through Py and perpendicular to n. We say that n is a

normal vector to the plane. The plane is the set of all points P for which _ﬁ is
perpendicular to n. (See Figure 10.28.)
14

Figure 10.28 The plane through Py /
y

with normal n contains all points P for x

which Py P is perpendicular to n
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If P = (x, y, z) has position vector r, then ?’o—l)’ = r —ry. This vector is perpendic-
ular to n if and only if n e (r — rg) = 0. This is the equation of the plane in vector
form. We can rewrite it in terms of coordinates to obtain the corresponding scalar
equation.

The point-normal equation of a plane

The plane having nonzero normal vector n = Ai + Bj + Ck, and passing
through the point Py = (xa, Yo, zo) with position vector ro, has equation

ne(r—ry)=0
in vector-form, or, equivalently,

AGx = x0)+ B(y ~ yo) + C ~ 20) = 0
in scalar form.

The scalar form can be written more simply in the standard form Ax + By +Cz =
D, where D = Axo + By + Czp.

If at least one of the constants A, B, and C is not zero, then the linear equation
Ax + By + Cz = D always represents a plane in R*>. For example, if A # 0, it
represents the plane through (D/A, 0, 0) with normal vector n = Ai + Bj + Ck.
A vector normal to a plane can always be determined from the coefficients of x, y,
and z. If the constant term D = 0, then the plane must pass through the origin.

(Recognizing and writing the equations of planes)

(a) The equation 2x — 3y — 4z = O represents a plane that passes through the
origin and is normal (perpendicular) to the vector n = 2i — 3j — 4k.

(b) The plane that passes through the point (2, 0, 1) and is perpendicular to the
straight line passing through the points (1, 1, 0) and (4, —1, —2) has normal
vectorn = (4 — i+ (—1 — 1)j+ (=2 — 0)k = 3i — 2j — 2k. Therefore, its
equationis 3(x —2)—2(y—0)—2(z—1) = 0, or, more simply, 3x —2y—27 = 4.

(c) The plane with equation 2x — y = 1 has a normal 2i — j that is perpendicular to
the z-axis. The plane is therefore parallel to the z-axis. Note that the equation
is independent of z. In the xy-plane, the equation 2x — y = 1 represents a
straight line; in 3-space it represents a plane containing that line and parallel
to the z-axis. What does the equation y = z represent in R*? the equation
y = =27

(d) The equation 2x 4 y 4 3z = 6 represents a plane with normal n = 2i + j + 3k.
In this case we cannot directly read from the equation the coordinates of a
particular point on the plane, but it is not difficult to discover some points. For
instance, if we put y = z = 0 in the equation we get x = 3, s0 (3,0,0) is a
point on the plane. We say that the x-intercept of the plane is 3 since (3, 0, 0)
is the point where the plane intersects the x-axis. Similarly, the y-intercept
is 6 and the z-intercept is 2 because the plane intersects the y- and z-axes at
(0,6, 0) and (0, 0, 2), respectively.



X

Figure 10.29 The plane with
intercepts a, b, and ¢ on the coordinate
axes
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(e) In general, if a, b, and ¢ are all nonzero, the plane with intercepts a, b, and ¢
on the coordinate axes has equation

Y

Lyl io

a b ¢

called the intercept form of the equation of the plane. (See Figure 10.29.)

|

Find an equation of the plane that passes through the three points
P=(1,1,0,0=0,2,1),and R = (3,2, -1).

Solution We need to find a vector, n, normal to the plane. Such a vector will be

perpendicular to the vectors @ =—i+j+kand PR =2i + j — k. Therefore,
we can use

i j k
n=POxPR=|-1 1 1|=-2i+j-3k
2 1 -1

We can use this normal vector together with the coordinates of any one of the three
given points to write the equation of the plane. Using point P leads to the equation
2x-D4+1(y—-1)-3(z—0)=0,0r

2x —y+3z=1.

You can check that using either Q or R leads to the same equation. (If the cross

product @ X ﬁ had been the zero vector, what would have been true about the
three points P, @, and R? Would they have determined a unique plane?)

ISR  Show that the two planes
x—y=3 and x+y+z=0
intersect, and find a vector, v, parallel to their line of intersection.
Solution The two planes have normal vectors
n=i—j and n=it+j+k,
respectively. Since these vectors are not parallel, the planes are not parallel, and

they intersect in a straight line perpendicular to both n; and n,. This line must
therefore be parallel to

i j k
v=mXm=|1 -1 0|=-i—j+2k.
1 1 1

A family of planes intersecting in a straight line is called a pencil of planes. (See
Figure 10.30.) Such a pencil of planes is determined by any two nonparallel planes
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Figure 10.30

A pencil of planes

in it, since these have a unique line of intersection. If the two nonparallel planes
have equations

Aix + Byy+ Ciz =D and Axx + By + Caz = D,
then, for any value of the real number A, the equation
Aix+Biy+Ciz— D1+ A(Ax + Byy + Coz — D) =0

represents a plane in the pencil. To see this, observe that the equation is linear,
and so represents a plane, and that any point (x, y, z) satisfying the equations of
both given planes also satisfies this equation for any value of A. Any plane in the
pencil except the second defining plane, A»x + B2y + C2z2 = D3, can be obtained
by suitably choosing A.

13761411 -W: M Find an equation of the plane passing through the line of intersection
of the two planes

x+y—2z=6 and 2x —y+z=2
and also passing through the point (-2, 0, 1).
Solution For any constant A, the equation

xX+y—2z—-6+2A2x—y+2z—-2)=0

represents a plane and is satisfied by the coordinates of all points on the line of
intersection of the given planes. This plane passes through the point (—2, 0, 1) if
~2—-2—-64+A(—4+1-2)=0,thatis, if . = —2. The equation of the required
plane therefore simplifies to 3x — 3y + 4z + 2 = 0. (This solution would not have
worked if the given point had been on the second plane, 2x — y + z = 2. Why?)

Lines in 3-Space

As we observed above, any two nonparallel planes in R® determine a unique
(straight) line of intersection, and a vector parallel to this line can be obtained
by taking the cross product of normal vectors to the two planes.

Suppose that ry = xoi + ygj + zok is the position vector of point P, and
v = ai+ bj + cK is a nonzero vector. There is a unique line passing through P,
parallel to v. If r = xi + yj + zk is the position vector of any other point P on the
line, then r — 1 lies along the line and so is parallel to v. (See Figure 10.31.) Thus,
r — rp = tv for some real number ¢. This equation, usually rewritten in the form

r == Iy -+ v,

is called the vector parametric equation of the straight line. All points on the
line can be obtained as the parameter ¢ ranges from —oo to oo. The vector v is
called a direction vector of the line.




Figure 10.31
parallel to v

The line through Py
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/

X

Breaking the vector parametric equation down into its components yields the scalar
parametric equations of the line:

X = Xxo+at
{ymyo+bt {(—o0 <€)
7 =1zp-Fct.

These appear to be three linear equations, but the parameter ¢ can be eliminated to
give two linear equations in x, y, and z. If @ # 0, b # 0, and ¢ # 0, then we can
solve each of the scalar equations for ¢ and so obtain

x—xo_y—yo__Z"Z()
e inog 1,
a b ¢

which is called the standard form for the equations of the straight line through
(x0, Yo, Zo) parallel to v. The standard form must be modified if any component of
v vanishes. For example, if ¢ = 0, the equations are

X=X _Y—Yo
a b

y &= 20

Note that none of the above equations for straight lines is unique; each depends on
the particular choice of the point (xo, Yo, zo) on the line. In general, you can always
use the equations of two nonparallel planes to represent their line of intersection.

(Equations of straight lines)
(a) The equations

y=3

{x=2+t
7= -4

represent the straight line through (2, 3, 0) parallel to the vector i — 4Kk.

(b) The straight line through (1, —2, 3) perpendicular to the plane x — 2y +4z = 5
is parallel to the normal vector i — 2j + 4Kk of the plane. Therefore, the line has
vector parametric equation
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r=i—2j+3k+td—2j+4k),

or scalar parametric equations

x=1+t1t
y=-2-2t

Its standard form equations are

x—1 y+2 z-3
1 - =2 4

S EHEY Find a direction vector for the line of intersection of the two planes
x+y—z=0 and y+2z =6,
and find a set of equations for the line in standard form.

Solution The two planes have respective normalsn; = i+j—kandn, = j+2k.
Thus, a direction vector of their line of intersection is

V=Il1><n2:3i—2j+k.

We need to know one point on the line in order to write equations in standard form.
We can find a point by assigning a value to one coordinate and calculating the other
two from the given equations. For instance, taking z = 0 in the two equations we
areledto y = 6 and x = —6, so (—6, 6, 0) is one point on the line. Thus, the line
has standard form equations

x+6 y—6
30 =2

= Z.

This answer is not unique; the coordinates of any other point on the line could be
used in place of (—6, 6, 0). You could even find a direction vector v by subtracting
the position vectors of two different points on the line.

_a

Distances

The distance between two geometric objects always means the minimum distance
between two points, one in each object. In the case of flar objects like lines or planes
defined by linear equations, such minimum distances can usually be determined by
geometric arguments without having to use calculus.

(Distance from a point to a plane)

(a) Find the distance from the point Py = (xo, yo, 20) to the plane P having
equation Ax + By + Cz = D.

(b) What is the distance from (2, —1, 3) to the plane 2x — 2y — z = 9?



Figure 10.32 The distance from Py
to the plane P is the length of the vector
projection of P Py along the normal n to
‘P, where P is any point on P
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Solution
(a) Letrg be the position vector of Py and let n = Ai+ Bj + Ck be the normal to
P. Let P, be the point on P that is closest to Py. Then P Py is perpendicular

to P and so is parallel to n. The distance from Py to P is s = [P Py|. If P,
having position vector r, is any point on P, then s is the length of the projection

of P_)Po = ry — r in the direction of n. (See Figure 10.32.) Thus

—
PPyen |(ro — 1) en| roen —r en|
S = = = .
m| m| [

Since P = (x, y,z) lieson P, we haveren = Ax + By + Cz = D. In terms
of the coordinates (x¢, yo, zo) of Py, we can therefore represent the distance
from Py to P as

s = |Axo + Byo +Czo — D]
VATL BT+ C?

(b) The distance from (2, —1, 3) to the plane 2x — 2y —z =9 is

- P@ 20D -16) -9 _ [ -6l

= = 2 units.
V22 + (=22 + (- 1)2 3

3'EIN KM (Distance from a point to a line)

(a) Find the distance from the point P, to the straight line £ through Py parallel to
the nonzero vector v.

(b) What is the distance from (2, 0, —3) to the line r = i+ (1 + 31)j — (3 — 41)k?

Solution

(a) Let rp and r; be the position vectors of Py and Py, respectively. The point P,
on L that is closest to Py is such that P, P, is perpendicular to £. The distance
from Py to L is
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Figure 10.33

(a) The distance from Py to the
line Liss = |PyPy|sin8

(b) The distance between the lines
L1 and L5 is the length of the
projection of Py P, along the
vector vy X V2

s = |PyPy| = | P Py|sin6 = |ry — ry|siné,

where 0 is the angle between ro — ry and v. (See Figure 10.33(a).) Since
[(rp — 1) X V| = |rg — 11| |V] sin 8,

we have

o — 1) X V]
8
vl

(b) Theliner =i+ (1 + 3t)j — (3 — 4¢)k passes through P; = (1, 1, —3) and is
parallel to v = 3j + 4k. The distance from Py = (2, 0, —3) to this line is

(@2 = Di+ 0 — Dj + (=3 + 3)k) X 3j + 4K)|

V3442
f[A-)Hx@Bj+4k)| |—4i—-4j+3k| 41 .
= s = 5 = units.

L, / Py P2

V) XVy

(@) (b)

1G] [-R B (The distance between two lines) Find the distance between the
two lines £; through point P; parallel to vector v; and £, through point P, parallel
to vector vs.

Solution Letr; and r; be the position vectors of points P; and P,, respectively. If
P3 and P4 (with position vectors r3 and r4) are the points on £; and £,, respectively,
that are closest to one another, then P3P, is perpendicular to both lines and is
therefore parallel to vy X vo. (See Figure 10.33(b).) P3P, is the vector projection

— . —_—
of Py P> = r, — ry along vy X vo. Therefore, the distance s = | P; P4| between the
lines is given by

[y =ri) e (v X V)
[Vi X V3]

s =ry =13l =
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1. A single equation involving the coordinates (x, y, z) need
not always represent a two-dimensional “surface” in R3. For
example, x2 + v% + z2 = 0 represents the single point
(0, 0, 0), which has dimension zero. Give examples of
single equations in x, y, and z that represent
(a) a (one-dimensional) straight line,

(b) the whole of R?,

(c) no points at all (i.e., the empty set).
In Exercises 2-9, find equations of the planes satisfying the
given conditions.

2. Passing through (0, 2, —3) and normal to the vector
H—-j—2k

3. Passing through the origin and having normal i — j + 2k

4. Passing through (1, 2, 3) and parallel to the plane
x4+y—-2z=15

S. Passing through the three points (1, 1, 0), (2, 0, 2), and
(0,3,3)

6. Passing through the three points (-2, 0, 0), (0, 3, 0), and
(0,0,9

7. Passing through (1, 1, 1) and (2, 0, 3) and perpendicular to
the plane x + 2y — 3z =0

8. Passing through the line of intersection of the planes
2x 4+ 3y —z =0and x — 4y + 2z = —35, and passing
through the point (-2, 0, —1)

9. Passing through the line x +y =2,y —z = 3, and
perpendicular to the plane 2x + 3y +4z7 =5

10. Under what geometric condition will three distinct points in
123 not determine a unique plane passing through them?
How can this condition be expressed algebraically in terms
of the position vectors, ry, r2, and r3, of the three points?

11. Give a condition on the position vectors of four points that
guarantees that the four points are coplanar, that is, all lie on
one plane.

Describe geometrically the one-parameter families of planes in

Exercises 12-14. (A is a real parameter.)

12 v +y+z7 =4
1—22y =1

In Exercises 15-19, find equations of the line specified in vector
and scalar parametric forms and in standard form.

15. Through the point (1, 2, 3) and parallel to 2i — 3j — 4k

16. Through (—1, 0, 1) and perpendicular to the plane
x —y+T77=12

#13. x + Ay + Az =2
14, hx +

17. Through the origin and parallel to the line of intersection of
theplanes x +2y —z=2and2x —y +4z =5

18. Through (2, —1. —1) and parailel to each of the two planes
y+y=0andx —y+2z=0

19. Through (1, 2, —1) and making equal angles with the
positive directions of the coordinate axes

In Exercises 20-22, find the equations of the given line in
standard form.

20 r=(1—-2t)i+ (4 +30)j+ (9 —4nk.

21 xii_SZ [x—2y+3z:0
B R 2x+3y—4dz =4
z=17
23. If P; = (x1, y1, z1) and Py = (x2, y2, z2), show that the
equations

x =x1+t(x3—xy1)
y=yt+ty2—-y1)
z=2z1+1(z2—2z21)

represent a line through Py and P,.

24. What points on the line in the previous exercise correspond
to the parameter values t = —1,+t = 1/2, and t = 2?
Describe their locations.

25. Under what conditions on the position vectors of four
distinct points Py, P2, P3, and P4 will the straight line
through Py and P, intersect the straight line through P3 and
Py at a unique point?

Find the required distances in Exercises 26-29.

26. From the origin to the plane x + 2y + 3z = 4

27. From (1, 2, 0) to the plane 3x — 4y — 57 =2

28. From the origintothelinex + y+z=0,2x — y — 5z =

29. Between the lines

x+y+z=6

{x+2y=3
x—27=-5

y4+2:=3 and {

3 P
30. Show that the line x —2 = 212 = %

2
plane 2y — z = 1. What is the distance between the line and
the plane?

1
is parallel to the

In Exercises 31-32, describe the one-parameter families of
straight lines represented by the given equations. (X is a real
parameter.)

*3L (1 —2)(x —x0) = A(y — y0), 2 = 2.
£3 K0 Y~ X
V1-22 A

33. Why does the factored second-degree equation

=2—20.

(A1x+ B1y+ Ciz — D1)(Ax + Boy + Coz ~ D3) =0

represent a pair of planes rather than a single straight line?
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The most general second-degree equation in three variables is
Ax*+ By’ +Cz*+ Dxy+ Exz + Fyz+ Gx + Hy+ Iz =J.

We will not attempt the (rather difficult) task of classifying all the surfaces that can
be represented by such an equation, but will examine some interesting special cases.
Let us observe at the outset that if the above equation can be factored in the form

(Aix + Biy + Ciz — D)(Azx + Byy + Coz — Do) =0,
quadric surface) will not be flat, although there may still be straight lines that lie on
the surface. Nondegenerate quadric surfaces fall into the following six categories.

Spheres. The equation x? + y? + z2 = a? represents a sphere of radius a centred
at the origin. More generally,

(x —x0)2 + (O —yo)* + (z — 20)* = a?

represents a sphere of radius a centred at the point (xq, yo, 20). If a quadratic
equation in x, y, and z has equal coefficients for the x2, y2, and z? terms and has
no other second-degree terms, then it will represent, if any surface at all, a sphere.
The centre can be found by completing the squares as for circles in the plane.

Cylinders. The equation x2 4+ y? = a?, being independent of z, represents a right-
circular cylinder of radius a and axis along the z-axis. (See Figure 10.34(a).)
The intersection of the cylinder with the horizontal plane z = k is the circle with
equations

x4yt =a?
z=k.

Quadric cylinders also come in other shapes: elliptic, parabolic, and hyperbolic.

For instance, z = x? represents a parabolic cylinder with vertex line along the

y-axis. (See Figure 10.34(b).) In general, an equation in two variables only will
represent a cylinder in 3-space.

s

SN

Figure 10.34

AT

(a) The circular cylinder
24y =g?
(b) The parabolic cylinder 7 = x? (a) (b)

AR




Figure 10.35

X

(a) The circular coné a?7% = x2 + y2

2

(b) The ellipsoid = +
a~

y2

b2

2
z
o

T2
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Cones. The equation z> = x? + y? represents a right-circular cone with axis
along the z-axis. The surface is generated by rotating about the z-axis the line
7z = y in the yz-plane. This generator makes an angle of 45° with the axis of
the cone. Cross-sections of the cone in planes parallel to the xy-plane are circles.
(See Figure 10.35(a).) The equation x2 + y? = a?z? also represents a right-circular
cone with vertex at the origin and axis along the z-axis but having semi-vertical
angle @ = tan"'a. A circular cone has plane cross-sections that are elliptical,
parabolic, and hyperbolic. Conversely, any nondegenerate quadric cone has a
direction perpendicular to which the cross-sections of the cone are circular. In that
sense, every quadric cone is a circular cone, though it may be obligue rather than
right-circular in that the line joining the centres of the circular cross-sections need
not be perpendicular to those cross-sections. (See Exercise 24.)

Ellipsoids. The equation

represents an ellipsoid with semi-axes a, b, and c. (See Figure 10.35(b).) The
surface is oval, and it is enclosed inside the rectangular parallelepiped —a < x < a,
—b<y<b,—c<z=<c. Ifa=>b=c,theellipsoid is a sphere. In general, all
plane cross-sections of ellipsoids are ellipses. This is easy to see for cross-sections
parallel to coordinate planes, but somewhat harder to see for other planes.

(a) (b)

%2 2 X2 2
1=+ and i=5 2

represent, respectively, an elliptic paraboloid and a hyperbolic paraboloid. (See
Figure 10.36(a) and (b).) Cross-sections in planes z = k (k being a positive
constant) are ellipses (circles if @ = b) and hyperbolas, respectively. Parabolic
reflective mirrors have the shape of circular paraboloids. The hyperbolic paraboloid
is aruled surface. (A ruled surface is one through every point of which there passes
a straight line lying wholly on the surface. Cones and cylinders are also examples
of ruled surfaces.) There are two one-parameter families of straight lines that lie on
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the hyperbolic paraboloid, namely,

+

S O

X
a
1 X
a

where A and u are real parameters. Every point on the hyperbolic paraboloid lies
on one line of each family.

\

L
NN s e

Nt

Figure 10.36

x X \\\‘\\\“"»1‘ ’
(2) The c;l%ipticygaraboloid ' ggs\\\\\ “\\“:““"“
=ty

(b) The hyperbolic paraboloid
2 2
z= ad J

T a2 b2

(@
Hyperboloids. The equation

represents a surface called a hyperboloid of one sheet. (See Figure 10.37(a).) The

equation
242 2 _
a?  br 2

Figure 10.37

(a) The hyperboloid of one sheet
¥ 2 2

a2 2
(b) The hyperboloid of two sheets
2 y2 2

— =—1
a? b2 c?
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have elliptical cross-sections in horizontal planes and hyperbolic cross-sections in
vertical planes. Both are asymptotic to the elliptic cone with equation

x2 2 2

they approach arbitrarily close to the cone as they recede arbitrarily far away from
the origin. Like the hyperbolic paraboloid, the hyperboloid of one sheet is a ruled

surface.

|Exercises 10.5

Identify the surfaces represented by the equations in Exercises
1-16 and sketch their graphs.

1. x2+4y2 492 =36 2. 22432442 =4

3. 2x2 42y 4222 —4x 48y — 127 +27=0

4. x24+4y2 +92 +4x -8y =8

5. 7 =x2+2y? 6. z =x%—2y?

7. x2—y2—72=4 8. —x2+y2+12=4
9. z=xy 10, x2 +472 =4

11. 2 —4;2 =4 12. y:zz

13 v=z247 14. x? = y2 4272

15. (z— 1?2 = (x = 2)* + (y = 3)?

16. (2 =1 = (x =2+ (y = 3)* +4

Describe and sketch the geometric objects represented by the
systems of equations in Exercises 17-20.

2200y
17.{x R 18.{"2+y2=1

X+y+z=

Z=x+Yy

19.

21.

22.

23.

%24,

{22:x2+y2

20 X242y 43:2=6
z=1+x

y=1

Find two one-parameter families of straight lines that lie on
the hyperboloid of one sheet

Find two one-parameter families of straight lines that lie on
the hyperbolic paraboloid z = xy.

The equation 2x2 + y2 = 1 represents a cylinder with
elliptical cross-sections in planes perpendicular to the z-axis.
Find a vector a perpendicular to which the cylinder has
circular cross-sections.

The equation 72 = 2x> 4 y? represents a cone with elliptical
cross-sections in planes perpendicular to the z-axis. Find a
vector a perpendicular to which the cone has circular
cross-sections. Hint: do Exercise 23 first and use its result.

Differential calculus is essentially the study of linear approximations to functions.
The tangent line to the graph y = f(x) at x = xg provides the “best linear
approximation” to f(x) near xo. Differentiation of functions of several variables
can also be viewed as a process of finding best linear approximations. Therefore
the language of linear algebra can be very useful for expressing certain concepts in
the calculus of several variables.

Linear algebra is a vast subject and is usually studied independently of calcu-
lus. This is unfortunate because understanding the relationship between the two
subjects can greatly enhance your understanding and appreciation of each of them.
Knowledge of linear algebra, and therefore familiarity with the material covered in
this section, is not essential for fruitful study of the rest of this book. However, we
shall from time to time comment on the significance of the subject at hand from the
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point of view of linear algebra. To this end we need only a little of the terminology
and content of linear algebra, especially that part pertaining to matrix manipulation
and systems of linear equations. In the rest of this section we present an outline of
this material. Some students will already be familiar with it; others will encounter
it later. We make no attempt at completeness here and refer interested students to
standard linear algebra texts for proofs of some assertions. Students proceeding
beyond this book to further study of advanced calculus and differential equations
will certainly need a much more extensive background in linear algebra.

Matrices

An m x n matrix A is a rectangular array of mn numbers arranged in m rows and
n columns. If a;; is the element in the ith row and the jth column, then

an 4aiz - Qin

(253 7 R 7
A=

aml Aam2 **° Qmn

Sometimes, as a shorthand notation, we write A = (a;;). In this case i is assumed
to range from 1 to m and j from 1 to n. If m = n, we say that 4 is a square matrix.
The elements a;; of the matrices we use in this book will always be real numbers.

The transpose of an m x n matrix 4 is the n x m matrix AT whose rows are
the columns of A:

aiy daz -+ amil

aip dx» - Gm2
AT =| . .

Aln A2n " Omn

Matrix A is called symmetric if A7 = A. Symmetric matrices are necessarily
square. Observe that (AT)T = A for every matrix A. Frequently we want to
consider an n-vector X as an n x 1 matrix having n rows and one column:

Xn

As such, X is called a column vector. x? then has one row and » columns and is
called a row vector:

x| = (x1x2 -+ x,).

Note that x and x” have the same components, so they are identical as vectors even
though they appear differently as matrices.

Most of the usefulness of matrices depends on the following definition of
matrix multiplication, which enables two arrays to be combined into a single one
in a manner that preserves linear relationships.
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Multiplying matrices
If A = (a;;) is an m x n matrix and B = (b;;) is an n X p matrix, then the
product AB is the m x p matrix C = (¢;;) with elements given by

n
Cij'—'zaikbkj, i=1,...,m, j:l,...,p.
k=1

That is, c;; is the dot product of the ith row of A and the jth column of B
(both of which are n-vectors).

Note that only some pairs of matrices can be multiplied. The product AB is only
defined if the number of columns of 4 is equal to the number of rows of B.

1 0 3 2 1o 5 1 13 15
21 )\ T3 =
1 0 4 5
The left factor has 2 rows and 3 columns, and the right factor has 3 rows and 4
columns. Therefore the product has 2 rows and 4 columns. The element in the first

row and third column of the product, 13, is the dot product of the first row, (1, 0, 3),
of the left factor and the third column, (1, 3, 4), of the second factor:

Ix14+0x34+3x4=13.

With a little practice you can easily calculate the elements of a matrix product by
simultaneously running your left index finger across rows of the left factor and your
right index finger down columns of the right factor while taking the dot products.

]
1 2 3 x x+2y+3z
-2 3 0 z —2x + 3y
The product of a 3 x 3 matrix with a column 3-vector is a column 3-vector.
|

Matrix multiplication is associative. This means that
ABC) = (AB)C

(provided A, B, and C have dimensions compatible with the formation of the various
products); therefore it makes sense to write ABC. However, matrix multiplication
is not commutative. Indeed, if A is an m x n matrix and B is an n x p matrix,
then the product 4B is defined, but the product B.A is not defined unless m = p.
Even if A and B are square matrices of the same size, it is not necessarily true that

AB = BA.
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Determinants and Matrix Inverses

In Section 10.3 we introduced 2 x 2 and 3 x 3 determinants as certain algebraic
expressions associated with 2 x 2 and 3 x 3 square arrays of numbers. In general,
it is possible to define the determinant det(.A) for any square matrix. Forann x n
matrix A we continue to denote

an ayp - Al

a1 axn -+ az
det(A) =

Apl Q4n2 -+ Qpn

We will not attempt to give a formal definition of the determinant here but will note
that the properties of determinants stated for the 3 x 3 case in Section 10.3 continue
to be true. In particular, an n x n determinant can be expanded in minors about
any row or column and so expressed as a sum of multiples of (n — 1) x (n — 1)
determinants. Continuing this process, we can eventually reduce the evaluation
of any n x n determinant to the evaluation of (perhaps many) 2 x 2 or 3 x 3
determinants. It is important to realize that the “diagonal” method for evaluating
2 x 2 or 3 x 3 determinants does not extend to 4 x 4 or higher-order determinants.

Example 4

2 10l 2 1 1] 211
1011

30 0 2|=—|3 02—t 01
1110 -1 10l [3 02

1 1 2 1 1 1
([ o2l 1) - )
=30-D+22+D+12-3)=2.
We expanded the 4 x 4 determinant in minors about the third column to obtain the

two 3 x 3 determinants. The first of these was expanded about the second row, the
other about the second column.

In addition to the properties stated in Section 10.3, determinants have two other
very important properties, which are stated in the following theorem.

If A and B are n X n matrices, then
(a) det(AT) = det(A) and
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(b) det(AB) = det(A)det(B).

=

We will not attempt any proof of this or other theorems in this section. The reader
is referred to texts on linear algebra. Part (a) is not very difficult to prove, even in
the case of general n. Part (b) cannot really be proved in general without a formal
definition of determinant. However, the reader should verify (b) for 2 x 2 matrices
by direct calculation.

We say that the square matrix 4 is singular if det(4) = 0. If det(A) # 0, we
say that .4 is nonsingular or invertible.

Remark If Aisa3 x 3 matrix, then det(.4) is the scalar triple product of the rows
of A, and its absolute value is the volume of the parallelepiped spanned by those
rows. Therefore, A is nonsingular if and only if its rows span a parallelepiped of
positive volume; the row vectors cannot all lie in the same plane. The same may be
said of the columns of A.

In general, an n x n matrix is singular if its rows (or columns), considered as
vectors, satisfy one or more linear equations of the form

a1X1+cXp + - -+ epx, =0,

with at least one nonzero coefficient ¢;. A set of vectors satisfying such a linear
equation is called linearly dependent because one of the vectors can always be
expressed as a linear combination of the others; if ¢y # 0, then

All linear combinations of the vectors in a linearly dependent set of n vectors in R”
must lie in a subspace of dimension lower than n.

The n x n identity matrix is the matrix

1 0 -~ 0
01 --- 0
I={. . . :
00 ... 1

with “1” in every position on the main diagonal and “0” in every other position.
Evidently 7 commutes with every n x n matrix: 74 = A7 = A. Alsodet(1) = 1.
The identity matrix plays the same role in matrix algebra that the number 1 plays
in arithmetic.

Any nonzero number x has a reciprocal x ! such that xx ' = x"'x = 1. A
similar situation holds for square matrices. The inverse of a nonsingular square
matrix A is a nonsingular square matrix 4! satisfying

AA = AT A =T,

Every nonsingular square matrix A has a unique inverse A~'. Moreover, the inverse
satisfies

(a) det(A™ ") = !

det(A)’
(b) (AHT =L

We will not have much cause to calculate inverses, but we note that it can be done
by solving systems of linear equations, as the following simple example illustrates.
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IEZTE  Show that the matrix A = ( } i ) is nonsingular and find its

inverse.

1 -1

Solution det(A) = ‘1 1

‘ = 1+ 1 = 2. Therefore, A is nonsingular and

invertible. Let 4! = (? Z) Then

1 0y (1 -1 a b _ (a—c b—-d
0 1/ \1 1J\c d) \a+c b+d)’
so a, b, ¢, and d must satisfy the systems of equations

{eTezy ezl

Evidentlya=b=d =1/2,c = —1/2, and

Al =
11
2 2

Generally, matrix inversion is not carried out by the method of the above example
but rather by an orderly process of performing operations on the rows of the matrix
to transform it into the identity. When the same operations are performed on the
rows of the identity matrix, the inverse of the original matrix results. See a text on
linear algebra for a description of the method. A singular matrix has no inverse.

=
[T
S——

n

Linear Transformations

A function F whose domain is the m-dimensional space R" and whose range is
contained in the n-dimensional space R" is called a linear transformation from
R"™ to R if it satisfies

FOx 4+ pny) = AF(x) + uF(y)

for all points x and y in R™ and all real numbers A and . To such a linear
transformation F there corresponds an #n X m matrix F such that for all x in R",

F(x) = Fx,
or, expressed in terms of the components of x,
X1
X2
Fxi, x2, -, xm) = F

Xm

We say that F is a matrix representation of the linear transformation F. If m = n
so that F maps R™ into itself, then F is a square matrix. In this case J is nonsingular
if and only if F is one-to-one and has the whole of R™ as range.
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A composition of linear transformations is still a linear transformation and
will have a matrix representation. The real motivation lying behind the definition
of matrix multiplication is that the matrix representation of a composition of lin-
ear transformations is the product of the individual matrix representations of the
transformations being composed.

If F is a linear transformation from R” to R* represented by the n x m matrix F,
and if G is a linear transformation from R* to R” represented by the p x n matrix
G, then the composition G o F defined by

GoF(x|,xp,...,x,) = G(F(xl,xg, ...,xm)>

is itself a linear transformation from R” to R” represented by the p x m matrix
GF. Thatis,

G(F(x)) — GFx.

Linear Equations

A system of # linear equations in # unknowns:

apxy +apxy+ -+ apx, = b

ax x) +anxy + -+ ayx, = b;

an1 X1 + ap2Xo + - -+ AupXp = bn

can be written compactly as a single matrix equation,

Ax = b,
where
ay ap - an X1 b
ay dxp - ay X2 by
A= ) . A x=| . ], and b=
anl Qp2 -+ Qup Xn bn

Compare the equation Ax = b with the equation ax = b for a single unknown
x. The equation ax = b has the unique solution x = a~'b provided a # 0. By
analogy, the linear system .Ax = b has a unique solution given by

x=A"'b,

provided A is nonsingular. To see this, just multiply both sides of the equation
Ax =bontheleftby A ;x =Ix = A~ ' Ax = A~ !b.

If A is singular, then the system .4x = b may or may not have a solution, and
if a solution exists it will not be unique. Consider the case b = 0 (the zero vector).
Then any vector x perpendicular to all the rows of A will satisfy the system. Since
the rows of A lie in a space of dimension less than n (because det(A) = 0), there
will be at least a line of such vectors x. Thus, solutions of Ax = 0 are not unique if
A is singular. The same must be true of the system .47y = 0; there will be nonzero
vectors y satisfying it if 4 is singular. But then, if the system .4x = b has any
solution x, we must have

yeb)=yb=y Ux=x"A"y)! = x"0)" = (0).




638

CHAPTER 10 Vectors and Coordinate Geometry in 3-Space

Hence, Ax = b can only have solutions for those vectors b that are perpendicular
to every solution y of ATy = 0.

A system of m linear equations in n unknowns may or may not have any
solutions if n < m. It will have solutions if some m — n of the equations are linear
combinations (sums of multiples) of the other n equations. If n > m, then we
can try to solve the m equations for m of the variables, allowing the solutions to
depend on the other n — m variables. Such a solution exists if the determinant of
the coefficients of the m variables for which we want to solve is not zero. This is a
special case of the Implicit Function Theorem which we will examine in Section
12.8.

2x+y—3z=4 .
S ELIEEY  Solve {x 42y 4+67=5 for x and y in terms of z.

Solution The system can be expressed in the form

x 443z 21
A(y):<5—6z> where A=<1 2)

. . -t 2/3 -—1/3
A has determinant 3 and inverse 47 = (_1 323 ) Thus

X\ _ g 4+3z\ _( 2/3 -—-1/3 443z (1442
y] 5—-6z) \-1/3 2/3 5—-6z) \2-5z
The solution is x = 1 + 4z, y = 2 — 5z. (Of course, this solution could have

been found by elimination of x or y from the given equations without using matrix
methods.)

The following theorem states a result of some theoretical importance expressing the
solution of the system .Ax = b for nonsingular 4 in terms of determinants.

Cramer’s Rule
Let A be a nonsingular n x n matrix. Then the solution x of the system

Ax =b
has components given by
= det(A;) Xy = det(A,) e det(A,)
det(A) ’ det(A) ’ T de(A)

where A; is the matrix A with its jth column replaced by the column vector b.
That is,

an -+ ag-ny b oaig+y - an

an - ayg-ny by asgyy - am
det(A;) = ) ) )

Anl - Gn-) bn anrn 0 G

The following example provides a concrete illustration of the use of Cramer’s Rule
to solve a specific linear system. However, Cramer’s Rule is primarily used in a
more general (theoretical) context; it is not efficient to use determinants to calculate
solutions of linear systems.
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S'ETLTIEWA  Find the point of intersection of the three planes

x+y+2z=1
3x+6y—-z=0
x—y—4z=23.

Solution The solution of the linear system above provides the coordinates of the
intersection point. The determinant of the coefficient matrix of this system is

1 1 2
det(A)=13 6 —1|=-32,
1 -1 —4
so the system does have a unique solution. We have
P | P
X = —— — = — = R
=325 1 _4 -32
L -
y=—F= — = — =—1,
—32 3 _4 -32
1 1 1
1 0
=% 3 6 0= = 0.
B 1 -1 3 N

The intersection pointis (2, —1, 0).

Quadratic Forms, Eigenvalues, and Eigenvectors

If x is a column vector in R” and A = (a;;) is an n x n, real, symmetric matrix,
(i.e.,a;j = aj; for 1 <i, j < n), then the expression

ox) = xT Ax = Z a;jx;Xj

iLj=1

is called a quadratic form on R” corresponding to the matrix 4. Observe that Q(x)
is a real number for every n-vector x.

We say that A is positive definite if Q(x) > 0 for every nonzero vector X.
Similarly, A is negative definite if Q(x) < O for every nonzero vector x, We
say that 4 is positive semidefinite (or negative semidefinite) if Q(x) > 0 (or
Q(x) < 0) for every nonzero vector X.

If O(x) > O for some nonzero vectors X while Q(x) < 0 for other such x (i.e.,
if A is neither positive semidefinite nor negative semidefinite), then we will say that
A is indefinite.

S ETIEE: The expression Q(x, y, z) = 3x% 4+ 2y? + 522 — 2xy + 4xz + 2yz
is a quadratic form on R® corresponding to the symmetric matrix

3 -1 2
.A:(—l 2 1).
2 15
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Observe how the elements of the matrix are obtained from the coefficients of Q; the
coefficients of x2, y2, and z? form the main diagonal elements, while the coefficients
of the product terms are cut in half and half is put in each of the two corresponding
symmetric off-diagonal positions.

The matrix A4 is positive definite since Q(x, y, z) can be rewritten in the form
0, y,2) =x*+(x — ) + (x +22)* + (v + 2%,
from which it is apparent that Q(x, y,z) > 0 for all (x, y,z) and Q(x,y,z) =0

onlyifx=y=z=0.
||

In Section 13.1 we will use the positive or negative definiteness of certain matrices to
classify critical points of functions of several variables as local maxima and minima.
Useful criteria for definiteness can be expressed in terms of the eigenvalues of the
matrix A.

We say that A is an eigenvalue of the n X n square matrix A = (g;;) if there
exists a nonzero column vector x such that 4x = Ax, or, equivalently,

(A—1Dx =0,

where 7 is the n x n identity matrix. The nonzero vector x is called an eigenvector
of A corresponding to the eigenvalue A and can exist only if A — AZ is a singular
matrix, that is, if

apn — A ap e ain
asy ap—»XA - dan
det(Ad —AD) = | , , " =o0.
anl an2 Cer dpp — A

The eigenvalues of .4 must satisfy this nth-degree polynomial equation, so they can
be either real or complex. The following theorems are proved in standard linear
algebra texts.

If A= (aij)?,jzl
(a) all the eigenvalues of A are real,

(b) all the eigenvalues of .A are nonzero if det(A) # 0,
(c) Ais positive definite if all its eigenvalues are positive,

is a real, symmetric matrix, then

(d) A is negative definite if all its eigenvalues are negative,
(e) A is positive semidefinite if all its eigenvalues are nonnegative,
(f) A is negative semidefinite if all its eigenvalues are nonpositive,

(g) Ais indefinite if it has at least one positive eigenvalue and at least one negative
eigenvalue.

Let A = (g j)ZjZI be a real symmetric matrix and consider the determinants

ar a2 - 4y
dz1 dz - 4y .
D; =1 . . . forl <i <n.

apy  aip -0 4
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Thus, Dy = ay, Dy = |21 92| = ayia2 — apay = anan — a?y, etc.
azy an
(a) If D; > Ofor 1 <i < n, then A is positive definite.
(b) If D; > 0O for even numbers i in {1, 2, ..., n}, and D; < 0 for odd numbers i
in{1,2,...,n}, then A is negative definite.
(¢c) If det(A) = D, # 0 but neither of the above conditions hold, then Q(x) is

indefinite.

(d) If det(A) = 0, then A is not positive or negative definite and may be semidefi-
nite or indefinite.

3 ETLTIERN  For the matrix A of Example 8, we have

3 3 -1 2
D;=3>0, D= =5>0, Dy=|-1 2 1|=10>0,
-1 2
2 1 5
which reconfirms that the quadratic form of that exercise is positive definite.
|

Evaluate the matrix products in Exercises

30 =2 2 1
1. 11 2 3 0
-1 1 -1 0 -2

1 1 1
2.0 1 1
0 0 1

s (¢ a)

d

1 1 1
01 1
0 01

)

)

w
y

N

w
y

X
<

4 (

C

5. Evaluate AA” and A% = AA, where

1-4. 10. Show that I i =y —x,and
Xy
1 1 1
x y z|=@-—x)z—x)z—y).
x2 2 22

Try to generalize this result to the n x n case.

x) (a z) 11. Verify the associative law (AB)C = A(BC) by direct
< ¢ calculation for three arbitrary 2 x 2 matrices.
12. Show that det(AT) = det(A) for n x n matrices by

induction on 7. Start with the 2 x 2 case.

I 1 1 1
A= 0 1 1 1 13. Verify by direct calculation that det(AB) = det(A)det(B)
10 0 11 holds for two arbitrary 2 x 2 matrices.
0 0 0 1 i
14. Let Ag = ( cos§ - sind ) Show that
—sinf cosé
T _ -1 _
6. Evaluate xx” , x” x, and xT Ax, where (Ag)" = (Ag)" = Ay.

X a p

x=1y and A={p b

z q r
Evaluate the determinants in Exercises 7—
2 3 -1 0 1

4 0 2 1 1

7. 1 0 -1 1 8. -2
-2 0 0 1 3

Find the inverses of the matrices in Exercises 15-16.

f) . 111 10 -1
c 15. (() 1 1> 16. (—1 1 0)
3. 0 0 1 2 1 3
11 1 17. Use your result from Exercise16 to solve the linear system
L)
32 -2 —xty =l
2x +y+3z=13.

9. Show that if 4 = (a;;) is an n x n matrix for which ¢;; =0
whenever i > j, then det(A) = HZ: | Gkcks the product of
the elements on the main diagonal of A.

18. Solve the system of Exercise 17 by using Cramer’s Rule.
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xi4+x+x3+x3=0 1 1 1 20
. X1+x+x3—x4=4 21. ( 1 _2> 22. 1 0
19. Solve the system X+ —x3—x4=6 0 0 1
—xp —x3 — x4 =2.
. no AT 2011 110
20. Verity Theorem 5 for the special case where F and G are
. . . 2 2 23. 11 2 1 24. |1 1 0
linear transformations from R~ to R“. L1 2 0 1
In Exercises 21-26, classify the given symmetric matrices as
positive or negative definite, positive or negative semidefinite, or 1 0 1 2 0 1
indefinite. 25. 10 1 -1 26. {0 4 -1
I -1 1 I -1 1

The use of a computer algebra system can free us from much of the tedious calcu-
lation needed to do calculus. This is especially true of calculations in multivariable
or vector calculus, where the calculations can quickly become unmanageable as
the number of variables increases. This author’s colleague, Dr. Robert Israel, has
written an excellent book, Calculus, the Maple Way, to show how Maple can be
used effectively for doing calculus involving both single-variable and multivariable
functions.

In this book we will occasionally call on the power of Maple to carry out
calculations involving functions of several variables and vector-valued functions of
one or more variables. This section illustrates some of the most basic techniques.
The examples here were calculated using Maple V Release 5, but Maple 6 gives
almost identical output.

Most of Maple’s capability to deal with vectors and matrices is not in its kernel
but is written into a package of procedures called linalg. Therefore, it is customary
to load this package at the beginning of a session where it will be needed:

> with(linalg):

One usually completes a Maple command with a semicolon rather than a colon.
You can use a colon to suppress output. In this case the suppression of output is
not complete; there are one or two warning messages printed, but they can safely
be ignored. Had we used a semicolon to complete the command the result would
have also included a list of all the procedures defined in the linalg package.

Maple 6 (and later releases) include a second linear algebra package called
LinearAlgebra. It is in some respects superior to linalg, especially for heavy-duty
numerical calculations using large matrices. It is also a little easier to use. For our
purposes, however, the older linalg package is sufficient and has two advantages
over the LinearAlgebra package: it defines certain procedures for differentiating
vector functions that we will use later, and it is included in earlier versions of Maple.
To simplify its use we will add a few new definitions as described below.

Vectors

First we create a few definitions of procedures to simplify our handling of vec-
tors. These are to be found in the file vecops.def available on the website
www.pearsoned.ca/text/adams_calc. This file can be read in at the
beginning of a Maple session with the command

> read "vecops.def";
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Reading in vecops.def will not only activate the new definitions, but it will also load
the linalg package, so that does not have to be done separately. Here is a listing of
vecops.def:

print (‘Loading the linalg package’);

with(linalg):

evl := V -> simplify(convert (evalm(V),list));
‘&, 1= (U,V) -> sum(U[1]*V[i],i=1..vectdim(U) ) ;
len := V -> sgrt(V &. V);

unitv := V -> evl ((1l/len(V))*V);

‘Ex’ 1= (U,V) -> 1if vectdim(U)=3 and vectdim(V)=3 then
(U[21*VI3]1-U[3]1*V[2],U[3]*V[1]-U[1]*V[3],
U[11*v[2]-Uf21*VI1]]

else print(‘Error - vectors must have dimension 37);

RETURN (" ")

fi:
Maple is capable of dealing with vectors as simple lists of elements; for example,
U := [-5,2,x]; defines U as the 3-vector with components —5, 2, and x. These

components can be referenced separately using indices placed in square brackets.
In this case, the input

> U[1]+U[3];
will produce the output —5 + x.

Vector addition and scalar multiplication are represented, just as their analogues
for numbers, by using “+” and “*”. Sometimes Maple may not automatically
simplify the result into a single vector. In this case we can apply the evl ()
function (defined in vecops.def) to the result to force the simplification. ev1 (%)
does three things: it expresses the previous result as a 1 x 3 matrix, then converts
the matrix to a list, then simplifies any elements of the list.

> U := [2,-2,1]1; V := [a, b, c];
U:=1[2,-2,1]

Vi=la,b,cc]
> U + V; 2*U + x*V;

la+2,6—2,c+1]
(4, —4,2]+x [a, b, c]

> evl(%);

[4+xa,—4+xb,2+xc]

In Release 5 of Maple V and in Maple 6 the “%” symbol refers to the result of the
previous calculation.

The linalg package provides definitions of the dot product and cross prod-
uct of two vectors that can be called by the functions dotprod (U, V) ; and
crossprod (U, V) ; In vecops.def we have defined two binary operators, “s.”
and “&x” to simplify the calculation of dot and cross products by providing a no-
tation similar to the one we use when writing mathematics. Thus, we calculate the
dot and cross products of Uand VasU &. Vand U &x V. It is not necessary to
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leave spaces around these operators except when &x is followed by a letter (like V);
then leaving a space is necessary so Maple won’t think you are using a variable by
the name of xV.

> U &. V; U &x V;
2a-2b+c

[2¢—=b,a—2c¢,2b+2a]

If you want the cross product of two plane vectors, you must give the third com-
ponents as zero. An attempt to calculate a cross product of vectors that are not
3-dimensional will generate an error message and produce an empty string.

> [1,1,0] &x [2,-1,0];
[0,0, =3}
> N := [1,1] &x [2,-1]; N;
Error - vectors must have dimension 3
N =
It is useful to have functions for the length of a vector and for a unit vector in the

direction of a given vector. vecops.def provides functions 1en () and unitv ()
for these purposes.

> len([2,1,-21); unitv([2,1,-21);
3

21 =2
3’37 3

The plane through (2, 1, —1) perpendicular to the line of intersection of the two
planes 2x + 3y 4z = S and 3x — 2y — 4z = 1 has normal N given by
> N := [2,3,1] &x [3,-2,-4];
N :=[-10, 11, —13]
Thus, the plane has equation
> N&. ([x,yv,z] - [2,1,-1]) = O;
—4—-10xx+11%xy—13xz=0

or, as we would write it, 10x — 11y + 13z = —4.

Now let us use Maple to verify the identity

(UXV)XW =UeW)V — (We V)U.

First, we define U, V, and W to be vectors with arbitrary components:

> U := vector(3); V := vector(3); W := vector(3);
U :=array(1..3,[])
V:=array(1..3,[])

W =array(1.3,[])

This output confirms that each vector is an array of 3 elements. Now we calculate
the left-hand side minus the right-hand side of the identity:

> (U &x V) &xX W - (U &. W)*V + (W &. V) *U;
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We expected to get the result [0, O, O] confirming that the identity is true. However,
what we got was a long vector of algebraic expressions involving the components
of the three vectors. It needs simplification. Entering evl (%) (i.e., using evl to
simplify the previous result) produces the desired [0, 0, 0].

Finally, we observe that all of the functions and operators defined in vecops.def
with the exception of the cross product, &x, can be applied to vectors of any
dimension:

> W := [seg(i,i=1..10)1; W &.W; len(W);
W :=1[1,2,3,4,5,6,7,8,9,10]
385
+/385.
Matrices

We do not need the extra vector operations in vecops.def to calculate with
matrices in Maple, but we do need many of the procedures defined in the linalg
package, so we must load this package if it is not already loaded.

> with(linalg):

In Maple, a matrix can be defined by feeding a list of lists to the functionmatrix ().
An m x n matrix (with m rows and » columns) corresponds to a list of m elements
(a column vector), each of which is a list of » numbers or expressions (the rows of
the matrix). For example, we specify the 2 x 3 matrix M with rows [1, 1, 1] and
[2,1,3] by

> M :=matrix([[1,1,11,([2,1,311);

1 1 1
M= [2 1 3}
Alternatively, we can specify the number of rows and columns of the matrix and
then provide the elements in order in a single list:
> M := matrix(2,3,[1,1,1,2,1,31);
1 11
M= [2 1 3]
Individual elements of a matrix can be addressed using two indices, the first indi-

cating the row and the second the column:
> M{2,1]; M[2,3];

2
3

The transpose T of the matrix M is the 3 x 2 matrix whose rows are the columns
of M. It is calculated using the transpose () function:

I 2
T::l:l 1}
1 3

The product, AB, of two matrices A and B is calculated using the binary operator
&*; that is, we calculate 2 &* B. Of course, the number of columns of A must
be equal to the number of rows of B. The resulting matrix product will be left
in symbolic form (i.e., as A &* B) unless we force its evaluation by using the

> T := transpose (M) ;
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matrix evaluation function evalm (). Here, we calculate the product of M and its
transpose T and then evaluate it with evalm. The resultis a 2 x 2 matrix:

> P :=M&* T; evalm(P);
P:=M&xT
o )
6 14
On the other hand, T &* Mis a3 x 3 matrix:
> Q := evalm(T &* M);

5 3 7
Q:=|:3 2 4:|
7 4 10

Observe that both M &* T and T &* M are symmetric, square matrices. (This is
always true of the matrix product of a real matrix and its transpose.)

The determinant of a square matrix (one with equal numbers of rows and
columns) is given by the det () function:

> A :=matrix(([([1,1,11,[2,1,31,1[5,-1,-211); det(a);

1 1 1
|:2 1 3}
5 -1 =2
13

The inverse of a nonsingular square matrix A can be calculated as
inverse (A):
> Ainv := inverse(A);
1/13 1/13 2/13
Ainv = I: 19/13 -7/13 —1/13:|

~7/13  6/13 —1/13

1 00
[010}
0 0 1

When a matrix is multiplied on the right by a list, Maple treats the list as a column
vector. When a matrix is multiplied on the left by a list, Maple treats the list as a
row vector. In either case, the result can be simplified by evalm():

> evalm(A &* Ainv) ;

> evalm(A &* [x,vy,z]); evalm([xX,v,z] &* A);
[x+y+2z2x+y+3z,5x -y — 2]

[x+2y+5z,x+y—2z,x+3y —2z]

A set of n linear equations in n variables can be written in the form AX = B,
where A is an n x n matrix and X and B are column n-vectors. Thus, the solution
can be calculated as X = A~'B. For example, the system

x+y+z=2, 2x4+y+3z=9, Sx—y—2z=1

has the matrix A defined above as its coefficient matrix, and B = [2,9,1]. The
solution of the system is:

> X := evalm(Ainv &* [2,9,11);
X =11, -2,3]
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thatis, x = 1, y = —2, z = 3. Maple provides a simpler way of solving the system
AX = B; we just need to use the function 1insolve (A, B):

> X := linsolve(A,[2,9,11);
X =11, -2, 3]

linsolve is better at solving linear systems than is matrix inversion, since it can
solve some systems for which the matrix is singular. Consider the two systems

x4+ y=1 x+y=1
and
x+2y=2 2x+2y=1

The first system has a one-parameter family of solutions x = 1 — ¢, y = ¢ for
arbitrary ¢ (which Maple V calls ¢[1] and Maple VI calls _#, to allow for the
possibility that some systems can have more than one such arbitrary constant in its
solution). The second system has no solutions.

> L :=matrix([{1,1],[2,21]); C1 := [1,2]; C2 := [1,1];
1 1
L.=[2 2}
Cl1:=1,2]
C2:=[1,1]
> X := linsolve(L,C1l);

X :=[1—¢[1],¢[1]1]

> X := linsolve(L,C2);
X =
Now X is undefined, indicating no solutions for Lx = C2. Since the matrix
inverse (L) does not exist, not even the solution of the first system, Lx = Cl,
canbe foundas X := inverse(L) &* C1.
> X := inverse (L) &* Cl;
Error, (in inverse) singular matrix
You may wonder why Cramer’s Rule is not used to calculate solutions of linear

systems. The reason is that it is very inefficient, requiring many more operations
than the elimination method used by 1insolve.

The linalg package has procedures for finding the eigenvalues and eigenvectors
of matrices. For a real symmetric matrix, the eigenvalues are always real.

> K :=matrix([[3,1,-13,01,4,11,(-1,1,311);

31 -1
K::l: 1 4 1:|
-1 1 3

> eigenvals(K); evalf (%);

4, 3443, 3-.3
4., 4732050808, 1.267949192

Since all three eigenvalues are positive, K is a positive definite matrix. Qur main use
for eigenvalues will be the classification of critical points of functions of several vari-
ables. This use does not require knowledge of the corresponding eigenvectors, but if
we did need to know them, we could have used the function eigenvectors (X)
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instead. The output of eigenvectors (A) is a set of lists, each of which con-
tains an eigenvalue of A, the multiplicity of that eigenvalue (i.e., the dimension
of the corresponding eigenspace), and a set of linearly independent eigenvectors
of A corresponding to that eigenvalue and forming a basis of the corresponding

eigenspace.

|Exercises 10.7

Use Maple to calculate the quantities in Exercises 1-2.

1. The distance between the line through (3, 0, 2) parallel to
the vector 2i + j — 2k and the line through (1, 2, 4) parallel
to i+ 3j + 4k

2. The angle between the vector i — j 4+ 2k and the plane
through the origin containing the vectors i — 2j — 3k and
2i+ 3j + 4k

Use Maple to verify the identities in Exercises 3-4

3. Ue (VXW)=Ve(WxU)=We(UxV)

4. (UxV)X(UXW) = (Ue (VXW)HU

In Exercises 5-10 define Maple functions to produce the
indicated results. You may use functions already defined in
vecops.def.

5. A function sp (U, V) that gives the scalar projection of
vector U along the nonzero vector V

6. A function vp (U, V) that gives the vector projection of
vector U along the nonzero vector V

7. A function ang (U, V) that gives the angle between the
nonzero vectors U and V in degrees as a decimal number

8. A function unitn (U, V) that gives a unit vector normal to
the two nonparallel vectors U and V in 3-space

9. A function VolT (U, V, W) that gives the volume of the
tetrahedron in 3-space that is spanned by the vectors U, V,
and W

10. A function dist (A, B) giving the distance between two

points having position vectors A and B. Use your function to
find the distance between [1, 1, 1, 1] and [3, —1, 2, 5]

In Exercises 11-12, use 1 insolve to solve the given systems.
u+2v+3x+4y+52=20
6u—v+6x+2y—3z=0
11. { 2u+8v—8x—2y+z=6
ut+v+x+y+z=>5

100 —3v+3x—-2y+2z=5
utv+x+y+z==6
u—2v+3x —4y+5x=-5
12, u—v+2x —2y+5z2=-1
2u —3v4+5x — 6y +8z=~6
2u—v+4x -3y+6z=1

13. Evaluate the determinant of the coefficient matrix for the
system in Exercise 11.

14. Find the eigenvalues of the coefficient matrix for the system
in Exercise 12. Quote your answers as decimal numbers
(use evalf)to 5 decimal places. Do you think any of them
are really complex?

15. Find the inverse of the matrix

1 12 1/3
A=[1/2 1/3 1/4}
1/3 1/4 1/5

16. Find, in decimal form (using evalf (eigenvals (A))
the eigenvalues of the matrix A of the previous exercise and
the eigenvalues of its inverse. How do you account for the
fact that some of the eigenvalues appear to be complex?

Chapter Review

Key Ideas

o What is each of the following?
¢ aneighbourhood ¢ an open set ¢ a closed set

¢ the boundary of a set ¢ the interior of a set

¢ a vector in 3-space © the dot product of vectors
o the cross product of two vectors in R3

¢ ascalar triple product ¢ a vector triple product

¢ amatrix ¢ a determinant




¢ aplane ¢ a straight line ¢ acone

¢ acylinder ¢ an ellipsoid © a paraboloid

¢ a hyperboloid of 1 sheet < a hyperboloid of 2 sheets

o the transpose of a matrix ¢ the inverse of a matrix

¢ a linear transformation © an eigenvalue of a matrix

o What is the angle between the vectors u and v?

« How do you calculate uX v, given the components of u and
v?

« What is an equation of the plane through P having normal
vector N?

« What is an equation of the straight line through Py parallel
to a?

e Given two 3 x 3 matrices A and B, how do you calculate
AB?

e What is the distance from Py to the plane Ax + By + Cz +
D =0?

e What is Cramer’s Rule and how is it used?

Review Exercises

Describe the sets of points in 3-space that satisfy the given equa-
tions or inequalities in Exercises 1-18.

1. x+3z2=3 2. y—z>1

Jx+y+z=20 4 x—2y—4z=8

5. v=14x*47’ 6. y=2>

7. .\":yz—z2 8 z=uxy

9. x24+y? +422 < 4 10. x2 +y? — 477 =4

1. 22 —y2—42=0 12, x* —y? 427 =4

13 (x— 22+ y2 =1 14 (x -2t +y*=2"

I5. {;:? ’ 16. {ﬁizi?:ol

. {x2+y2+22=4 18 {x2+z251
x+y+z=3 x—=y=0

Find equations of the planes and lines specified in Exercises
19-28.

19. The plane through the origin perpendicular to the line

x—1 y+3 z+42

2 T 1 3

20. The plane through (2, —1, 1) and (1, 0, —1) parallel to the
line in Exercise 19

21. The plane through (2, —1, 1) perpendicular to the planes
x—y+z=0and2x +y—3z=2
22. The plane through (—1, 1, 0), (0, 4, —1), and (2, 0, 0)

23. The plane containing the line of intersection of the planes
x +y+z=0and 2x +y — 3z = 2, and passing through the
point (2,0, 1)
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24. The plane containing the line of intersection of the planes
x+y-+z=0and2x + y — 3z = 2, and perpendicular to the
plane x — 2y — 5z = 17

25. The vector parametric equation of the line through (2, 1, —1)
and (—1,0, 1)

26. Standard form equations of the line through (1, 0, —1) parallel
to each of the planes x —y=3andx +2y+z=1

27. Scalar parametric equations of the line through the origin
perpendicular to the plane 3x — 2y +4z =35

28. The vector parametric equation of the line that joins points
on the two lines
r=(1+ni—tj— (2+20)k
r=2ti+ (@ —-2)j— (14+3k
and is perpendicular to both those lines

Express the given conditions or quantities in Exercises 29-30 in
terms of dot and cross products.

29. The three points with position vectors r, r, and r3 all lie on
a straight line.

30. The four points with position vectors ry, rp, r3, and rq do not
all lie on a plane.

31. Find the area of the triangle with vertices (1, 2, 1), (4, —1, 1),
and (3, 4, =2).

32. Find the volume of the tetrahedron with vertices (1,2, 1),
“4,—1,1),3,4,-2),and (2,2, 2).

33. Show that the matrix
1

Noo—-= O O
-0 OO

has an inverse, and find the inverse A~!.

1 1 1
34. Let A = (2 1 0 ) What condition must the vector b
1 0 -1
satsify in order that the equation .Ax = b has solutions x?
What are the solutions x if b satisfies the condition?

3 -1 1
35. Is the matrix ( -1 1 -1 ) positive or negative definite
1 -1 2
or neither?
Challenging Problems

1. Show that the distance d from point P to the line AB can be
expressed in terms of the position vectors of P, A, and B by
|(rg —rp) X (rg —rp)|
lra —rp|

d =

2. For any vectors u, v, w, and x, show that

(uxv)><(wxx)=((uxv)ox)w—((u><v)ow)x

= ((w X X) ou)v— ((w X X) ov)u.
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In particular, show that

(uxv)x(uxw):((uxv)-w)u.

3. Show that the area A of a triangle with vertices (x1, y1, 0),
(x2. v2.0), and (x3, y3, 0), in the xy-plane is given by

xp v 1
A=—||x2 y» 1]
x3 ya 1

4. (a) If Ly and L, are two skew (i.e., nonparallel and non-
intersecting) lines, show that there is a pair of parallel
planes P; and P such that L; lies in Py and L, lies in
P,

(b) Find parallel planes containing the following two lines:
L through points (1, 1, 0) and (2, 0, 1), and L, through
points (0, 1, 1) and (1, 2, 2).

5. What condition must the vectors a and b satisfy to ensure
that the equation a X x = b has solutions? If this condition is
satisfied, find all solutions of the equation. Describe the set
of solutions.



