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Chapter 1.

PRE-CALCULUS

1.1 Domain and range

Definition. A function f is a rule by which values of the independent variable
x are assigned values of the dependent variable y :

y = f (x)

In calculus, functions can be defined by using a table, a graph or a formula.

Definition. The set of numbers x at which f (x) is defined is the domain of f .

Definition. The range of f is the set of values which are assumed by f on its
domain.

Find the domain of the following functions:

1.1. y =
x2

4+ x
1.2. y =

√
4x− x2

1.3. y =
1√

4x− x2
1.4. y = ln(x+2)+ ln(x−2)

1.5. y =
1

ln(1− x)
+
√

x+2 1.6. y = sin−1
(x

4

)

1.7. y = cos−1
(

2
2+ sinx

)
1.8. y = sin−1

(
2x

1+ x

)

1.9. y = log
(

sin
π

x

)
1.10. y = ln(lnx)

Are the following functions the same?

1.11. f (x) = x, g(x) =
√

x2 1.12. f (x) = lnx2, g(x) = 2lnx

1.13. f (x) = 2log2 x,g(x) = x 1.14. f (x) = tanxcotx, g(x) = 1

1.15. f (x) = tanx, g(x) =
1

cotx
1.16. f (x) = cos(cos−1 x),

g(x) = cos−1(cosx)
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Find the domain and range of the following functions.

1.17. y =
√

2+ x− x2 1.18. y = log(1−2cosx)

1.19. y = cos−1 2x
1+ x2 1.20. y = sin−1

(
log

x
10

)

1.2 Function graphs

Without using the derivative, sketch the following functions.

1.21. y = (x−1)2 1.22. y = x2 +2x−4

1.23. y = 5+6x− x2 1.24. y =
√

1− x2

1.25. y = |x|+ x 1.26. y = (|x|+2)(|x|−3)

1.27. y =
∣∣3− x

∣∣−3 1.28. y =
1

1+ x2

1.29. y = log |x| 1.30. y =
∣∣3x−1

∣∣

1.31. y = 2x+1 +2x+2 +2x+3 1.32. y =
(

1
2

)|x|

1.33. y = sin |x| 1.34. y = |sinx|

1.35. y =
√

2x 1.36. y = (x+1)1/3

1.37. y = ex/2 1.38. y = ex−x2

1.39. y = 1+0.5x 1.40. y =
∣∣ln(x+1)

∣∣

1.41. y = tan
x
2

1.42. y = cos
(

x+
π

4

)

1.43. y = x+
1
x

1.44. y =
1

x2 + x+1

1.45. y =
1

x2−1
1.46. y =

1− x
x+1

1.47. y = 6cosx+8sinx 1.48. y = ex cosx

1.49. y = e−x2
cos(2x) 1.50. y = sin2 x

1.51. y = x1/ lnx 1.52. y =
1

ex cosx

1.53. y =
|x−3|+ |x+1|
|x+3|+ |x+1| 1.54. y = |cosx|+ |sinx|

1.55. y = sinx|cosx|+ cosx|sinx| 1.56. y = sin
(
2sin−1 x

)
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1.57. y = log1/2

(
x− 1

2

)
+ log2

√
4x2−4x+1

1.58. Compare the graphs of f (x) = sin
(
cos−1 x

)
and g(x) =

√
1− x2 . What is

the relation between these functions?
1.59. Compare the graphs of f (x) = cos

(
tan−1 x

)
and g(x) = 1√

1+x2 . What is the
relation between these functions?

1.60. Compare the graphs of f (x) = cos−1
(

1−x2

1+x2

)
and g(x) = 2tan−1 x for x≥ 0 .

What is the relation between these functions?
1.61. Prove that if the graph of f (x) , x ∈ R is symmetric with respect to the

vertical lines x = a and x = b , a 6= b , then f is periodic.
1.62. A function is antiperiodic if there exists some number T > 0 such that

f (x+ T ) = − f (x). Prove that an antiperiodic function is periodic with a period of
2T .

1.63. Can a function defined for all x be both even and odd? If so, find all such
functions.

1.64. Let f (x) be the sum of two periodic functions. Is it periodic?



Chapter 2.

SEQUENCES

Definition. The natural numbers or positive integers are the numbers 1,2,3, . . .
A sequence of real numbers is an assignment of a real number to each natural
number.

Examples of sequences are arithmetic and geometric progressions, e.g.
an = a1 +(n−1)d and bn = b1qn−1 .

Definition. Let xn be a sequence of real numbers. The number A is the limit of
this sequence if for any positive number ε there exists a number N such that
|xn−A|< ε for any n > N .

The limit of a sequence is denoted lim
n→∞

xn = a .

Example 2.1. Using the definition of the limit of a sequence, show that

a) lim
n→∞

4n
2n+1

= 2; b) lim
n→∞

2n +1
2n = 1 .

Solution. a) By the definition,

lim
n→∞

4n
2n+1

= 2 ⇔ ∀ε > 0 ∃N,

∣∣∣∣
4n

2n+1
−2
∣∣∣∣< ε ∀n > N.

Simplifying,
∣∣∣∣
4n−4n−2

2n+1

∣∣∣∣=
∣∣∣∣
−2

2n+1

∣∣∣∣=
2

2n+1
< ε ⇒ 2nε + ε > 2 ⇒ n >

2− ε

2ε
.

Therefore, N =
[2−ε

2ε

]
(the greatest whole number that does not exceed 2−ε

2ε
). For

any ε > 0 the value of the sequence terms
( 4n

2n+1

)
for any n > N will differ from

the limit of the sequence by less than ε .

b) By the definition,

lim
n→∞

2n +1
2n = 1 ⇔ ∀ε > 0 ∃N,

∣∣∣∣
2n +1

2n −1
∣∣∣∣< ε ∀n > N.

Simplifying,
∣∣∣∣
2n +1−2n

2n

∣∣∣∣=
∣∣∣∣

1
2n

∣∣∣∣=
1
2n < ε ⇒ 2n >

1
ε
⇒ n > log2

1
ε
.

Therefore, N =

[
log2

1
ε

]
.

Example 2.2. Using the definition of the limit of a sequence, show that

lim
n→∞

3n3 +4n2−5n+6
n3 +4n2 +6n+20

= 3.
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Solution. By the definition,

lim
n→∞

3n3 +4n2−5n+6
n3 +4n2 +6n+20

= 3 ⇔

⇔∀ε > 0 ∃N,

∣∣∣∣
3n3 +4n2−5n+6
n3 +4n2 +6n+20

−3
∣∣∣∣< ε ∀n > N.

Simplifying,
∣∣∣∣
−8n2−23n−54

n3 +4n2 +6n+20

∣∣∣∣< ε

The difference between this inequality and the similar inequalities in the previous
example is that this one cannot be solved exactly. However, according to the defini-
tion, it is only necessary to show that the values of the sequence terms differ from
the sequence limit by less than ε starting at some point; it is not at all necessary to
find the exact place where this starts to happen:

∣∣∣∣
−8n2−23n−54

n3 +4n2 +6n+20

∣∣∣∣=
8n2 +23n+54

n3 +4n2 +6n+20
<

8n2 +23n2 +54n2

n3 =
85
n

Therefore, if
85
n

< ε, then

∣∣∣∣
−8n2−23n−54

n3 +4n2 +6n+20

∣∣∣∣< ε ; N =

[
85
ε

]
.

Prove the following limits using the definition of the limit of a sequence.

2.1. lim
n→∞

3n−1
5n+1

=
3
5

2.2. lim
n→∞

n
n2 +1

= 0

2.3. lim
n→∞

n2 +2n
n2 +2

= 1 2.4. lim
n→∞

2n +4
3n−5

= 0

2.5. lim
n→∞

3n2−1
n2 +n+1

= 3 2.6. lim
n→∞

n3−10n2 +5n−6
2n3 +4n2−n+1

= 0.5

2.7. lim
n→∞

22−n = 0 2.8. lim
n→∞

sinn! 5√n3

n+1
= 0

2.9. lim
n→∞

sinn+ cosn√
n

= 0

Definition. A sequence is infinitely small as x→ a if lim
x→a

xn = 0 .

Definition. A sequence is infinitely large as x→ a if for any number M , how-
ever large, there is a number N such that |xn| > M for any n > N . This is
concisely written as follows: lim

n→∞
|xn|= ∞ .

Most of the time, we need to consider infinitely large sequences such that
lim
n→∞

xn = ∞ . For most other common infinitely large sequences, lim
n→∞

xn =−∞ .

Important: Infinitely large sequences do not have a limit; in other words, the
limit of an infinitely large sequence does not exist. The expression lim

n→∞
xn = ∞ is

a convention only, which shows the manner in which the limit does not exist.
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Theorem. If the sequence {xn} is infinitely large, then the sequence
{

1
xn

}
is

infinitely small, and vice versa.

Properties of sequence limits

Assuming that all the limits given below exist,

1. lim
n→∞

kxn = k lim
n→∞

xn , where k is a constant;

2. lim
n→∞

(
xn + yn

)
= lim

n→∞
xn + lim

n→∞
yn ;

3. lim
n→∞

xnyn = lim
n→∞

xn lim
n→∞

yn ;

4. lim
n→∞

xn

yn
=

lim
n→∞

xn

lim
n→∞

yn
, lim

n→∞
yn 6= 0 ;

5. If f (x) is an elementary function, then lim
n→∞

f
(
xn
)
= f

(
lim
n→∞

xn

)
.

Example 2.3. Find the following limits.

a) lim
n→∞

2n+3
2n+4

; b) lim
n→∞

n3 +n2 +n+1
3n3−2n2 +n−1

; c) lim
n→∞

(√
n2 +1−n

)
.

Solution. a) Dividing the numerator and denominator by n ,

lim
n→∞

2n+3
2n+4

= lim
n→∞

2+ 3
n

2+ 4
n

=
2+0
2+0

= 1 .

b) Dividing the numerator and denominator by n3 ,

lim
n→∞

n3 +n2 +n+1
3n3−2n2 +n−1

= lim
n→∞

1+ 1
n +

1
n2 +

1
n3

3−21
n +

1
n2 − 1

n3

=
1+0+0+0
3+0+0+0

=
1
3
.

c) Multiplying by the complement,

lim
n→∞

(√
n2 +1−n

)
= lim

n→∞

(√
n2 +1−n

)(√
n2 +1+n

)

√
n2 +1+n

=

= lim
n→∞

n2 +1−n2
√

n2 +1+n
= lim

n→∞

1√
n2 +1+n

=

[
1
∞

]
= 0 .

In Example 2.3, it was necessary to transform the expressions before finding
their limits. This is because a direct application of the properties of sequence limits
could not be used. For instance, in a) and b) the numerator and denominator were
infinitely large, making a direct application of property 4 impossible. In c), the
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items in the difference were also infinitely large, making a direct application of
property 2 impossible. These expressions are called indeterminacies: in a) and b),

the indeterminacy was of the type
(

∞

∞

)
, while in c) it was of the type (∞−∞) .

Another common indeterminacy is the type (1∞) . The most common case is:

lim
n→∞

(
1+

1
n

)n

= e,

which is the definition of the number e , the base of the natural logarithm. It is
easy to show that

lim
n→∞

(
1− 1

n

)n

=
1
e
.

Example 2.4. Find the following limits.

a) lim
n→∞

(
n+2

n

)n

; b) lim
n→∞

(
n2−n+1
n2 +n+1

)2n

.

Solution. a) We have

lim
n→∞

(
n+2

n

)n

= lim
n→∞

(
1+

2
n

) n
2 ·2

= e2,

because (using a change of variables m = n
2 )

lim
n→∞

(
1+

2
n

) n
2

= lim
m→∞

(
1+

1
m

)m

= e.

b) In the same way,

lim
n→∞

(
n2−n+1
n2 +n+1

)2n

= lim
n→∞

(
1− 2n

n2 +n+1

) n2+n+1
2n · 2n

n2+n+1
·2n

=

=
1

e
lim
n→∞

4n2

n2+n+1

= e−4.

Find the following limits.

2.10. lim
n→∞

(n+1)2

2n2 2.11. lim
n→∞

2n3−500n2 +19
220n2 +50n

2.12. lim
n→∞

n(n+1)(n+2)
(2n+3)(3n+4)(4n+5)

2.13. lim
n→∞

2356n3 +6n2

0.007n4−9n3 +61

2.14. lim
n→∞

(2n+1)3− (n−1)3

(2n+1)3 +(n−1)3 2.15. lim
n→∞

4n3−3n2 +2n−5
5n3 +8n−17

.

2.16. lim
n→∞

(
4n3 +n2−8
3n3 +n+20

)3

2.17. lim
n→∞

√
n2 +2+

√
n√

n2−2+
√

2n2 +1
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2.18. lim
n→∞

sin(n2 +n)
n+2

2.19. lim
n→∞

log2 n
log3 n

2.20. lim
n→∞

1+2+3+ . . .+n
n2 2.21. lim

n→∞

n3

12 +22 +32 + . . .+n2

2.22. lim
n→∞

1+a+a2 + . . .+a n

1+b+b2 + . . .+b n , (|a|< 1, |b|< 1)

2.23. lim
n→∞

(
1+2+3+ . . .+n

n+2
− n

2

)
2.24. lim

n→∞

(
n
(

1
n3 +

3
n3 + . . .+

2n−1
n3

))

2.25. lim
n→∞

2
4n−5
8n+5 2.26. lim

n→∞

3
√

n3 +2n2 +2n−1
n−2

2.27. lim
n→∞

3
√

n2 +5n+10
3n−1

2.28. lim
n→∞

(√
n2 +1+n

)2

3
√

n6 +1

2.29. lim
n→∞

(
n2 +4

nsinn+n2 ·
1

n3 +1

)
2.30. lim

n→∞

(√
4n2 +n−2n

)

2.31. lim
n→∞

n
(√

n2 +1−n
)

2.32. lim
n→∞

(√
n2 +n−n

)

2.33. lim
n→∞

(√
3n2 +2n−

√
3n2−4n

)
2.34. lim

n→∞

(√
n+2

√
n−√n

)

2.35. lim
n→∞

(
n+1
n−1

)n

2.36. lim
n→∞

(
n2 +n+1

n2 +2

)3n

2.37. lim
n→∞

(
n+3
n+4

)2−4n

2.38. lim
n→∞

(
3
√

n−1
3
√

n

)√n−1

2.39. Consider two sequences, xn and yn . If xn converges, and yn does not, what
can be said about the convergence of the sequences xn + yn and xnyn ?

2.40. Consider two sequences, xn and yn , neither of which is convergent. What
can be said about the convergence of the sequences xn + yn and xnyn ?

2.41. Let lim
n→∞

xnyn = 0 . Is it true that either lim
n→∞

xn = 0 or lim
n→∞

yn = 0 , or both?

2.42. If lim
n→∞
|an|= |a| , is it true that lim

n→∞
an = a? Is it true that an converges?

2.43. Let bn be some sequence. Is it true that if lim
n→∞

an = 0 , then lim
n→∞

anbn = 0?
2.44. Give an example of diverging sequences an and bn such that an +bn con-

verges.
2.45. Give an example of diverging sequences an and bn such that anbn con-

verges.
2.46. Give an example of diverging sequences an and bn such that the sequences

an +bn and anbn both converge.
2.47. Consider the sequence defined by the series of equations

3 =
2
x1

= x1 +
2
x2

= x2 +
2
x3

= x3 +
2
x4

= . . .

Guess at a general expression for xn in terms of n and prove your formula by induc-
tion. Then find lim

n→∞
xn .



Chapter 3.

FUNCTION LIMITS

3.1 Algebraic methods for finding limits

Definition. The number A is the limit of the function f at x = a if for any
positive number ε there exists a positive number δ such that | f (x)−A|< ε

for any 0 < |x−a|< δ .

The limit of a function at a point is denoted lim
x→a

f (x) = A .

Definition. The number A is the limit of the function f at infinity if for any
positive number ε there exists a number x0 > 0 such that | f (x)−A|< ε for
any x > x0 .
The limit of a function at infinity is denoted lim

x→∞
f (x) = A.

Definition. The number A is the limit of the function f at minus infinity if for
any positive number ε there exists a number x0 > 0 such that | f (x)−A|< ε

for any x <−x0 .
The limit of a function at minus infinity is denoted lim

x→−∞
f (x) = A.

The limit of a function at infinity can be found using the same methods as for
the limit of a sequence. The limit of a function at minus infinity can also be found
using these methods, but remembering that the argument of the function (x ) is
negative.

Properties of function limits

Assuming that all the limits given below exist,

1. lim
x→a

k f (x) = k lim
x→a

f (x) , where k is a constant;

2. lim
x→a

(
f (x)+g(x)

)
= lim

x→a
f (x)+ lim

x→a
g(x) ;

3. lim
x→a

f (x)g(x) = lim
x→a

f (x) lim
x→a

g(x) ;

4. lim
x→a

f (x)
g(x)

=
lim
x→a

f (x)

lim
x→a

g(x)
, lim

x→a
g(x) 6= 0 ;

5. If f (x) is an elementary function, then lim
x→a

f
(
g(x)

)
= f

(
lim
x→a

g(x)
)
.

Definition. An elementary function is a function built from a finite number
of constants and power, exponential, logarithmic, trigonometric and inverse
trigonometric functions through composition and combinations using the four
elementary operations (addition, subtraction, multiplication and division).
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Special limits

1. lim
x→0

sinx
x

= 1 ;

2. lim
x→∞

(
1+

1
x

)x

= lim
x→0

(1+ x)1/x = e .

Theorem (The sandwich theorem)

If there exists an interval (a− ε,a+ ε) such that g(x) ≤ f (x) ≤ h(x) for all
x ∈ (a− ε,a+ ε) , and lim

x→a
g(x) = lim

x→a
h(x) = A , then lim

x→a
f (x) = A .

Example 3.1. Find the following limits:

a) lim
x→3

x+2
x−1

; b) lim
x→1

x2−6x+5
x2 +3x−4

; c) lim
x→−1

x+1√
5+ x−2

.

Solution.

a) This limit can be found directly:

lim
x→3

x+2
x−1

=
3+2
3−1

=
5
2
.

b) Factor the numerator and denominator:

lim
x→1

x2−6x+5
x2 +3x−4

= lim
x→1

(x−5)(x−1)
(x+4)(x−1)

= lim
x→1

x−5
x+4

=−4
5
.

c) Multiplying the numerator and denominator by the complement,

lim
x→−1

x+1√
5+ x−2

= lim
x→−1

(x+1)
(√

5+ x+2
)

(√
5+ x−2

)(√
5+ x+2

) =

= lim
x→−1

(x+1)
(√

5+ x+2
)

5+ x−4
= lim

x→−1

(√
5+ x+2

)
= 4.

Example 3.2. Find lim
x→∞

(
1− 1

x

)x

.

Solution. Limits of this type can be reduced to the second special limit:

lim
x→∞

(
1− 1

x

)x

= lim
x→∞

(
x−1

x

)x

= lim
x→∞

(
x

x−1

)−x

= lim
x→∞

(
1+

1
x−1

)−x

=

= lim
x→∞

((
1+

1
x−1

)x−1
) −x

x−1
= e
− lim

x→∞

x
x−1 = e−1 .
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Example 3.3. Find lim
x→0

xsin
1
x
.

Solution. The difficulty here is the presence of sin
1
x
, which does not have a limit

as x→ 0 . However, −1≤ sin
1
x
≤ 1 , so we have

−|x| ≤ xsin
1
x
≤ |x| .

Since lim
x→0

(−|x|) = 0 and lim
x→0
|x|= 0 , we conclude on the basis of the sandwich

theorem that lim
x→0

xsin
1
x
= 0 .

Find the following limits.

3.1. lim
x→∞

x
x+1

3.2. lim
x→∞

3x−1
4x+1

3.3. lim
x→∞

(2x+1)2

4x2 3.4. lim
x→∞

(
x3

x2 +1
− x
)

3.5. lim
x→0

x3−3x+1
x−4

3.6. lim
x→−2

x2−4
x+2

3.7. lim
x→0

x2−1
2x2− x−1

. 3.8. lim
x→1

x2−1
2x2− x−1

3.9. lim
x→∞

x2−1
2x2− x−1

3.10. lim
x→−2

x3 +3x2 +2x
x2− x−6

3.11. lim
x→2

x2−4x+4
x3−4x

3.12. lim
x→−1/3

27x3 +1
3x2−2x−1

3.13. lim
x→1

x4−2x+1
x6−2x+1

3.14. lim
x→1

x3−4x+3
x4−5x+4

3.15. lim
x→0

(1+2x)(2+3x)(3+4x)−6
x

3.16. lim
x→∞

(x+1)(x+2)(x+3)
(2x−1)3

3.17. lim
x→∞

(x+10)5(6x−20)5

(3x+1)10 3.18. lim
x→−1

(
x3 +5x2 +7x+3

)5

(x2 +3x+2)10

3.19. lim
x→ 1

2

8x3−1
6x2−5x+1

3.20. lim
x→−1

x3−2x−1
x5−2x−1

3.21. lim
x→1

x60−1
x30−1

3.22. lim
x→1

(x−1)cosπx
x3−1

3.23. lim
x→1

√
x−1

x−1
3.24. lim

x→1

x2−√x√
x−1

3.25. lim
x→2

√
x+2−2
x−2

3.26. lim
x→0

√
x2 +4x+9+ x−3

25x2 +5x

3.27. lim
x→4

√
3x−3−3
2−√x

3.28. lim
x→5

√
x+11−

√
21− x

x2−25
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3.29. lim
x→81

4
√

x−3√
x−9

3.30. lim
x→0

3
√

1− x+2x2−1
2x+ x2

3.31. lim
x→0

x2

5
√

1+5x− (1+ x)
3.32. lim

x→0

√
1+ x−1

3
√

1+ x−1

3.33. lim
x→1

(
3

1−√x
− 2

1− 3
√

x

)
3.34. lim

x→7

√
x+2− 3

√
x+20

4
√

x+9−2

3.35. lim
x→4

√
x−2 3

√
x−3

3− 4
√

85− x
3.36. lim

x→1

1− 10
√

x
1− 15
√

x

3.37. lim
x→1

m
√

x−1
n
√

x−1
, {n,m} ∈ N 3.38. lim

x→∞

(√
x2 +1− x

)

3.39. lim
x→∞

(√
x2 + x− x

)
3.40. lim

x→∞

(√
x2 +3x− x

)

3.41. lim
x→∞

(
x−
√

x2−4x
)

3.42. lim
x→∞

(√
x+
√

x−√x
)

3.43. lim
x→∞

(
3
√

x+
(
x+ 3
√

x
)2/3− 3

√
x
)

3.44. lim
x→∞

√
x
(√

x+1+
√

x+2−2
√

x
)

3.45. lim
x→∞

(
1+

2
x

)x

3.46. lim
x→∞

(
2x+1
2x−1

)x

3.47. lim
x→0

(
1+2x
1−2x

)1/x

3.48. lim
x→∞

(
x+1

x

)x

3.49. lim
x→∞

(
x

x+1

)x

3.50. lim
x→∞

(
x+1
x−1

)x

3.51. lim
x→∞

(
x2 +2x+2
x2 +2x+1

)3x2−1

3.52. lim
x→∞

(
x+2
2x+1

)x2

3.53. lim
x→∞

(
x2 +1
x2−2

)x2

3.54. lim
x→ π

3

sin(x−π/3)
1−2cosx

3.55. lim
x→0

x2 sin
2+ x

x
3.56. lim

x→0
sinxsin

1
x

3.57. If lim
x→∞

f (x) exists, and lim
x→∞

g(x) does not, what can be said about the limits

lim
x→∞

( f (x)+g(x)) and lim
x→∞

( f (x)g(x))?

3.58. If the limits lim
x→∞

f (x) and lim
x→∞

g(x) do not exist, is it true that the limits

lim
x→∞

( f (x)+g(x)) and lim
x→∞

( f (x)g(x)) do not exist as well?

3.59. Let lim
x→∞

( f (x)g(x)) = 0 . Is it true that either lim
x→∞

f (x) = 0 or lim
x→∞

g(x) = 0 ,
or both?



16 CHAPTER 3. FUNCTION LIMITS

3.2 One-sided limits

Definition. The left limit of f at x = a equals A if for any positive num-
ber ε there exists a positive number δ such that | f (x)− A| < ε for any
a−δ < x < a .

The left limit is denoted lim
x→a−

f (x) = A or lim
x→a−0

f (x) = A .

Definition. The right limit of f at x = a equals A if for any positive num-
ber ε there exists a positive number δ such that | f (x)− A| < ε for any
a < x < a+δ .

The right limit is denoted lim
x→a+

f (x) = A or lim
x→a+0

f (x) = A .

Theorem. The following statements are equivalent: lim
x→a

f (x) = A and

lim
x→a−

f (x) = lim
x→a+

f (x) = A .

In other words, the limit of a function at x = a exists if and only if the left
limit equals the right limit.

Example 3.4. Find the left and right limits of the function

f (x) =

{
x2, 0≤ x≤ 1,
3− x, 1 < x≤ 2

at the point x = 1 .

Solution. lim
x→1−

f (x) = lim
x→1−

x2 = 1 ; lim
x→1+

f (x) = lim
x→1+

(3− x) = 2 .

Example 3.5. Find the left and right limits of the function

f (x) =
x

x−3

at the point x = 3 .

Solution. lim
x→3−

f (x) = lim
x→3−

x
x−3

=

(
3
−0

)
=−∞ ;

lim
x→3+

f (x) = lim
x→3+

x
x−3

=

(
3
0

)
= ∞ ;

Find the left and right limits at the given point.

3.60. f (x) =
x
|x| at x = 0 3.61. f (x) =

1
x−2

at x = 2

3.62. f (x) =
1

(x+2)2 at x =−2 3.63. f (x) =
x2 + x−6
|x−2| at x = 2

3.64. f (x) =

{
3−2x, x≤ 1,
3x−5, x > 1

at x = 1
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3.3 Function asymptotes

Definition. A straight line is an asymptote of a function, if the distance between
a point on the graph of the function and that line approaches zero as the point
approaches infinity.

There are two kinds of asymptotes:

I. Vertical asymptotes

Definition. The line x = a is a vertical
asymptote of f (x) , if either lim

x→a−
f (x) or

lim
x→a+

f (x) equals ∞ or −∞ .

£gure 11

0 a
x

y

11

II.Slant asymptotes

Definition. Slant asymptotes are lines that
the function graph approaches at x→±∞ .
Their equation is y = kx+b , where

k = lim
x→±∞

f (x)
x

, b = lim
x→±∞

( f (x)− kx) .

Slant asymptotes at x → ∞ and x → −∞

should be considered separately.

£gure 12

0
x

y

12

Definition. The line y = a is a horizontal
asymptote of f (x) , if lim

x→∞
f (x) = a or

lim
x→−∞

f (x) = a .

Horizontal asymptotes are a special case of
slant asymptotes, when k = 0 .

£gure 13

0
x

y

a

13

Example 3.6. Find the asymptotes of the function f (x) =
x2−2x+2

x−3
.

Solution. First we will consider whether or not this function has vertical asymp-
totes, i.e. points where either lim

x→a+
f (x) or lim

x→a−
f (x) is infinity. The only points

where the function can be infinitely large is where the denominator of the function
becomes zero: x = 3 . Indeed, we have

lim
x→3−

f (x) = lim
x→3−

x2−2x+2
x−3

=

(
5
−0

)
=−∞,
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so x = 3 is indeed a vertical asymptote of f (x) . (It would also be possible to
consider the right limit of f (x) at x = 3 , which is ∞ .)

Next, consider the behaviour of f (x) as x→ ∞ :

k = lim
x→∞

x2−2x+2
x(x−3)

= 1;

b = lim
x→∞

(
x2−2x+2

x−3
− x
)
= lim

x→∞

x+2
x−3

= 1.

Therefore, the asymptote of f (x) at ∞ is y = x+1 .
It can be noted that the calculations given above will be exactly the same if

x→−∞ ; therefore the asymptote of f (x) as x→−∞ will be the same: y = x+1 .

Example 3.7. Find the asymptotes of the function f (x) =
√

x2 + x .

Solution. Since the function is continuous for all x , this function has no vertical
asymptotes. In order to find the slant asymptotes, we will first consider x→ ∞ :

k = lim
x→∞

√
x2 + x

x
= lim

x→∞

√
x2 + x

x2 = lim
x→∞

√
1+

1
x
= 1;

b = lim
x→∞

(√
x2 + x− x

)
= lim

x→∞

x√
x2 + x+ x

= lim
x→∞

1√
1+ 1

x +1
=

1
2
.

Therefore, the asymptote at ∞ is y = x+ 1
2 . Consider now x→ −∞ : unlike the

previous example, here the limits will be different, because for x < 0 we have
x =−

√
x2 :

k = lim
x→−∞

√
x2 + x

x
=− lim

x→−∞

√
x2 + x

x2 =− lim
x→−∞

√
1+

1
x
=−1;

b = lim
x→−∞

(√
x2 + x+ x

)
= lim

x→−∞

x√
x2 + x− x

= lim
x→−∞

1

−
√

1+ 1
x −1

=−1
2
.

The asymptote at −∞ is y =−x− 1
2 .

Find all asymptotes of the following functions.

3.65. x2− y2 = 1 3.66. xy = x+1

3.67. y =
1

x2 +1
3.68. y =

x2 +6x−5
x

3.69. y =
x2

x+3
3.70. y =

x2−5x+4
x−4

3.71. y =
x3

x2 +2x−3
3.72. y = x+ e−x

3.73. y =
√

x2−1 3.74. y =
x√

x2 +1
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3.75. y =
x2

√
x2−1

3.76. y = x+
sinx

x

3.77. y =
√

1
x −1 3.78. y = e1/x

3.79. y =

√
x3

x−2
3.80. y = 3

√
x3−6x2

3.4 Equivalent infinitely small functions

Definition. The function f (x) is infinitely small as x→ a , if lim
x→a

f (x) = 0 .

Definition. Two infinitely small functions are equivalent as x→ a , if

lim
x→a

f (x)
g(x)

= 1.

Equivalency is denoted f (x)∼ g(x) .

Table of equivalent infinitely small functions

1. sinx∼ x

2. tanx∼ x

3. 1− cosx∼ x2

2

4. tan−1 x∼ x

5. sin−1 x∼ x

6. ln(1+ x)∼ x

7. ex−1∼ x

8. (1+ x)n−1∼ nx

Example 3.8. Find the following limits.

a) lim
x→0

sin2x
7x

; b) lim
x→0

tan−1 5x
sin−1 9x

; c) lim
x→π/2

cosx
π−2x

; d) lim
x→0

tanx− sinx
x3 .

Solution.

a) lim
x→0

sin2x
7x

= lim
x→0

sin2x
2x
· 2x

7x
= 1 · 2

7
=

2
7
.

b) lim
x→0

tan−1 5x
sin−1 9x

= lim
x→0

tan−1 5x
5x

· 9x
sin−1 9x

· 5x
9x

= 1 ·1 · 5
9
=

5
9
.

c) lim
x→π/2

cosx
π−2x

=

:
:

:
:

y = π

2 − x,
y→ 0

:
:

:
:

= lim
y→0

cos
(

π

2 − y
)

2y
= lim

y→0

siny
2y

=
1
2
.

d) lim
x→0

tanx− sinx
x3 = lim

x→0

sinx
x
· 1− cosx

x2 cosx
= 1 · lim

x→0

1− cosx
x2 =

1
2
.
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Find the following limits using equivalency.

3.81. lim
x→0

sin3x
x

3.82. lim
x→0

sin3x
sin2x

3.83. lim
x→0

tan2x
tan(−5x)

3.84. lim
x→0

sin3x
tan7x

3.85. lim
x→0

1− cosx
x2 3.86. lim

x→0

sin−1 x
x

3.87. lim
x→0

1− cos2x
1− cos3x

3.88. lim
x→0

sin−1 2x
tan−1 3x

3.89. lim
x→0

sin2x− sinx
sin3x

3.90. lim
x→0

sin2 x− sin2x
x

3.91. lim
x→0

cos2x− cosx
sin2 x

3.92. lim
x→π

sinx
π2− x2

3.93. lim
x→π/2

1− sinx

(π/2− x)2 3.94. lim
x→π/4

sinx− cosx
π−4x

3.95. lim
x→1

sinπx
sin2πx

3.96. lim
x→2

cot(πx)(2− x)

3.97. lim
x→π

sin2 x
1+ cosx

3.98. lim
x→π/4

sinx− cosx
tanx−1

3.99. lim
x→π/2

1−
√

1+ cotx
cotx

3.100. lim
x→0

tanx√
1− tanx−1

3.101. lim
x→π/2

2cosx
π−2x

3.102. lim
x→π/2

π−2x
2cotx

3.103. lim
x→0

loga(1+2x)
x

3.104. lim
x→0

ax−1
3x

3.105. lim
x→0

sin4x
e−3x−1

3.106. lim
x→0

ln(1+2x)
tan4x

3.107. lim
x→0

√
x+3

3−2x −1

x+ sinx
3.108. lim

x→−1

cos4x− cos4
sin4+ sin4x

3.109. lim
x→0

1− e−x

sin3x
3.110. lim

x→0

e−3x− e−4x

x

3.111. lim
x→0

32x−1
x

3.112. lim
x→0

esin2x− esinx

x

3.113. lim
4x→0

sin(x+4x)−2sinx+ sin(x−4x)
4x2

3.114. lim
4x→0

cos(x+4x)−2cosx+ cos(x−4x)
4x2
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CONTINUOUS FUNCTIONS

4.1 Continuity

Definition. The function f is continuous at x = a if lim
x→a

f (x) = f (a) .

This definition is equivalent to the condition lim
x→a−

f (x) = lim
x→a+

f (x) = f (a) .

Intuitively, continuous functions have a graph which can be drawn without
lifting the pencil.

Example 4.1. Define f (1) so that the function f (x) =
x2−1
x3−1

is continuous at

x = 1 .

Solution. By the definition, f (x) will be continuous at x = 1 if lim
x→1

f (x) = f (1) .

lim
x→1

f (x) = lim
x→1

x2−1
x3−1

= lim
x→1

x+1
x2 + x+1

=
2
3
.

Therefore, f (x) will be continuous at x = 1 if f (1) = 2
3 .

Define f (0) so that the following functions will be continuous at x = 0.

4.1. f (x) =
√

1+ x−1
x

. 4.2. f (x) =
√

1+2x−1
3
√

1+2x−1
.

4.3. f (x) =
sinx

x
. 4.4. f (x) = 4

1− cosx
x2 .

4.5. f (x) =
tan2x

x
. 4.6. f (x) = sinxsin

1
x
.

4.7. f (x) = (1+ x)1/x (x > 0). 4.8. f (x) = e−1/x2
.

4.9. If the function f (x) is continuous for all x and f (x) =
x2−5x+4

x−4
when

x 6= 4 , what is f (4)?

4.10. If possible, define f (1) so that the function f (x) =

√
x2−2x+1

x2−4x+3
is contin-

uous at x = 1 .

Example 4.2. Determine the value of k such that the function

f (x) =

{
3kx−5, x < 2;
4x−5k, x≥ 2
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is continuous.

Solution. Consider the point x = 2 .

lim
x→2−

f (x) = lim
x→2−

(3kx−5) = 6k−5;

lim
x→2+

f (x) = lim
x→2+

(4x−5k) = 8−5k;

f (2) = 4×2−5k = 8−5k .

The function f (x) will be continuous at x = 2 if lim
x→2−

f (x) = lim
x→2+

f (x) = f (2) ,

so for continuity put

6k−5 = 8−5k ⇒ 11k = 13 ⇒ k = 13
11 .

Find the values of all unknown constants so that the function is continuous.

4.11. f (x) =

{
x+1, x≤ 1,

3−mx2, x > 1.
4.12. f (x) =

{
4kx−4, x > 2,
4x−2k, x≤ 2.

4.13. f (x) =





x2−9
x−3

, x 6= 3,

A, x = 3.
4.14. f (x) =

{
e2x, x < 0,
x−a, x≥ 0.

4.15. f (x) =

{
x2 +3x, x≤ 2,
bx lnx, x > 2.

4.16. f (x) =

{
e2x+d, x≥ 0,
x+2, x < 0.

4.17. f (x) =

{
x+2, x < k,
− x+6, x≥ k.

4.18. f (x) =





x2 +ax, x < 2,

sin
πx
2
−2x, x≥ 2.

4.19. f (x) =

{
(x+ c)2, x < 3,
5x+ c, x≥ 3.

4.20. f (x) =

{
en+x, x≥ 0,
x+2, x < 0.

4.21. f (x) =





2x, x≤−1,
ax+b, |x|< 1,

x2 +3, x≥ 1.

4.22. f (x) =





−2sinx, x <−π

2
,

asinx+b, |x| ≤ π

2
,

cosx, x >
π

2
.

4.23. Is it true that the square of a discontinuous function is also discontinuous?
4.24. Prove that the cube of a discontinuous function is also discontinuous.
4.25. If f (x) is continuous at x = x0 , and g(x) is not, what can be said about the

continuity of the functions f (x)+g(x) and f (x)g(x)?
4.26. If f (x) and g(x) are not continuous at x = x0 , what can be said about the

continuity of the functions f (x)+g(x) and f (x)g(x)?
4.27. Show that the equation x5−3x = 1 has at least one root between 1 and 2 .
4.28. Show that the equation (3− x) ·3x = 3 has at least one root on the interval

(2,3) .
4.29. Let f (x) be continuous on [a,b] . Prove that for any points x1 and x2 in

[a,b] there exists a point c such that

f (c) =
1
2
(

f (x1)+ f (x2)
)
.
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4.30. Consider the function y = f (x) , where f (x) = 0 if x is a rational number,
and f (x) = x if x is irrational. At how many points is this function continuous?

4.2 Points of discontinuity

There are three types of discontinuities:

I. Removable discontinuities

Definition. A discontinuity is classified as removable, if lim
x→a−

f (x) = lim
x→a+

f (x) .

(An equivalent statement is that lim
x→a

f (x) exists.)

Since f is not continuous at x = a , a remov-
able discontinuity implies that f (a) is either un-
defined, or defined so that lim

x→a
f (x) 6= f (a) . By

redefining f (a) , it is possible to make f contin-
uous at x = a .

£gure 19

0
x

y

a

19

Definition. All discontinuities which are not removable are called unremovable.

II. Jump discontinuities

Definition. The function f has a jump discontinuity at x = a , if both the left
and right limits of f exist at that point, but lim

x→a−
f (x) 6= lim

x→a+
f (x) .

The genesis of the term “jump discontinuity”
should be obvious just by looking at the graph
to the right...

£gure 20
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Removable and jump discontinuities are also sometimes called Type I discon-
tinuities. Using this terminology, a jump discontinuity would be called a “non-
removable Type I discontinuity".

III. Type II discontinuities

Definition. The function f has a Type II discontinuity at x = a , if either one
or both of the one-sided limits of f do not exist at that point.



24 CHAPTER 4. CONTINUOUS FUNCTIONS

In particular, if one of the one-sided limits is in-
finite, then f has a Type II discontinuity at that
point. However, this is only a special case of a
Type II discontinuity.

£gure 21
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Example 4.3. Classify the points of discontinuity of the function

f (x) =





x2, −2≤ x < 0;
4, x = 0;
1
x
, 0 < x≤ 2.

Solution. The function f (x) is defined on the interval [−2,2] . Since the function
x2 is continuous on the interval [−2,0) and the function 1/x is continuous on
(0,2] , the only point that needs to be considered is x = 0 .

lim
x→0−

f (x) = lim
x→0−

x2 = 0 ; lim
x→0+

f (x) = lim
x→0+

1
x
= ∞ .

Since the right limit does not exist (equals infinity), f (x) has a type II disconti-
nuity at x = 0 .

Example 4.4. Classify the points of discontinuity of the function

f (x) =





0, x < 0;
x, 0≤ x < 1;

− x2 +4x+2, 1≤ x < 3;
4− x, x≥ 3.

Solution. The points that are possible points of discontinuity are x = 0 , x = 1 , and
x = 3 .

lim
x→0−

f (x) = lim
x→0−

0 = 0 ; lim
x→0+

f (x) = lim
x→0+

x = 0 . Since f (0) = 0 as well,

f (x) is continuous at x = 0 .

lim
x→1−

f (x) = lim
x→1−

x = 1 ; lim
x→1+

f (x) = lim
x→1+

(−x2 +4x+2) = 5 . Since the left

and right limits of f (x) exist but are not equal to each other, f (x) has a type I
discontinuity at x = 1 .

lim
x→3−

f (x) = lim
x→3−

(−x2+4x+2) = 5 ; lim
x→3+

f (x) = lim
x→3+

(4−x) = 1 . Since the

left and right limits of f (x) exist but are not equal to each other, f (x) has a type I
discontinuity at x = 3 .
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Find the points of discontinuity and classify them.

4.31. f (x) =
x
|x| 4.32. f (x) =

3
x+4

4.33. f (x) =
1

(x+4)2 4.34. f (x) =
x2 + x−6
|x−2|

4.35. f (x) =

{
4+ x, x≤ 1,
2− x, x > 1

4.36. f (x) =
x2−4

x2−5x+6

4.37. f (x) =
x2−1

x3−3x+2
4.38. f (x) =

|x−2|
x2−4

4.39. f (x) =
5

21/x−2
4.40. f (x) = 221/(1−x)

4.41. f (x) =
51/x−1
51/x +1

4.42. f (x) =





sinx
x

, x 6= 0,

0, x = 0

4.43. f (x) =
sinx

x
4.44. f (x) =

cosx
x

4.45. f (x) =





cos
πx
2
, |x| ≤ 1,

|x−1|, |x|> 1
4.46. f (x) =

√
1− cosx

x

4.47. f (x) = tan−1 1
x

4.48. f (x) =
1

ln |x|

4.49. f (x) =

{
cot2 πx, x /∈ Z,
0, x ∈ Z

4.50. f (x) =
1

1+3tanx

4.51. f (x) = tan−1
(

1
x
+

1
x−1

+
1

x−2

)
.

4.3 Properties of continuous functions

Theorem (Boundedness theorem)

If f is continuous on the closed interval [a,b] , then it is bounded on [a,b] ,
i.e. there exist m and M such that m≤ f (x)≤M for all x ∈ [a,b] .

Theorem (Extreme Value theorem)

If f is continuous on the closed interval [a,b] , then f attains its minimum and
maximum values on [a,b] , i.e. there exists c1 ∈ [a,b] such that f (x)≥ f (c1) ,
x ∈ [a,b] , and there exists c2 ∈ [a,b] such that f (x)≤ f (c2) , x ∈ [a,b] .

Theorem (Intermediate Value theorem)

If f is continuous on the closed interval [a,b] , m is its minimum value and
M is its maximum value on [a,b] , then for any µ , m < µ < M , there exists
c ∈ [a,b] such that f (c) = µ .
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A special case of the intermediate value theorem is the
Theorem (Root theorem)

If f is continuous on the closed interval [a,b] and its values at the end-
points of the interval have different signs (i.e. f (a) f (b)< 0 ), then there exists
c ∈ (a,b) such that f (c) = 0 .

4.52. Prove that if f (x) is continuous on (a,b) and x1 , x2 and x3 belong to
(a,b) , then there exists c ∈ (a,b) such that f (c) = 1

3 ( f (x1)+ f (x2)+ f (x3)) .
4.53. Prove that any polynomial with an odd highest power has at least one root.
4.54. Prove that if f and g are continuous on [a,b] and f (a) > g(a) ,

f (b)< g(b) , then there exists a point c ∈ [a,b] such that f (c) = g(c) .
4.55. Does there exist a function which is continuous on [a,b] and the range of

which is [0,1]∪ [2,3]?



Chapter 5.

DERIVATIVES

5.1 Definition of the derivative

Definition. Given two points x and x1 = x+4x , the increment of f (x) on the
interval [x,x1] is given by

4 f = f (x1)− f (x) = f (x+4x)− f (x).

Note that 4x (called the increment of x ) does not always have to be positive!

Definition. The derivative of the function f (x) is the limit

f ′(x) = lim
4x→0

4 f
4x

= lim
4x→0

f (x+4x)− f (x)
4x

.

The derivative can also be denoted by
d f
dx

.

The derivative at x = x0 can be expressed in other ways as well:

f ′(x0) = lim
4x→0

f (x0 +4x)− f (x0)

4x
=

= lim
h→0

f (x0 +h)− f (x0)

h
= lim

x→x0

f (x)− f (x0)

x− x0
.

Definition. The second derivative of the function f (x) is the derivative of
f ′(x) :

f ′′(x) =
d2 f
dx2 = lim

4x→0

f ′(x+4x)− f ′(x)
4x

.

Definition. A function is differentiable, if the main part of its increment is linear
with respect to the increment of the argument, i.e., if

4y = A4x+α(4x)4x

where lim
4x→0

α(4x) = 0 .

Theorem. A function is differentiable if and only if it has a derivative.

A function that can be differentiated twice (i.e., a function that has a second
derivative) is called twice-differentiable.
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Approximate calculation of the derivative

If it is not possible to find the exact expression for the derivative (for instance,
if f (x) is defined by a graph or by a table), then the approximate value of f ′(x)
at the point x = x0 equals

f ′(x0)≈
4 f
4x

=
f (x0 +4x)− f (x0)

4x
,

where 4x = x− x0 . Remember that 4x does not always have to be positive. In
practice, you can use any of the following formulas:

f ′(x0)≈
f (x0 +h)− f (x0)

h
;

f ′(x0)≈
f (x0)− f (x0−h)

h
;

f ′(x0)≈
f (x0 +h)− f (x0−h)

2h
.

The second derivative can be approximated by using the formula

f ′′(x0)≈
f (x0 +h)−2 f (x0)+ f (x0−h)

h2 .

Example 5.1. Find the derivative of f (x) = 4x2 using the definition.

Solution.

f (x+4x)− f (x) = 4(x+4x)2−4x2 = 4x2 +8x4x+4(4x)2−4x2 =

= 8x4x+4(4x)2 .

Therefore,

f ′(x) = lim
4x→0

f (x+4x)− f (x)
4x

= lim
4x→0

8x4x+4(4x)2

4x
= lim
4x→0

(8x+44x) = 8x.

Find the derivatives of the following functions using the definition.

5.1. x 5.2.
1
x

5.3. x3 5.4. x2 +2x+2

5.5.
√

x 5.6. 4sin
x
2

5.7.
3√
x
+2 ·3x 5.8. loga x

5.9. log2(3x) 5.10. 3
√

x+ log2
x
2
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Example 5.2. Find an approximate value of f ′(2) and f ′′(2) if it is known that
f (1.8) = 3.3 , f (2) = 3.5 and f (2.2) = 3.6 .

Solution. There are three equally valid approximate values of f ′(2) that can be
found:

f ′(2)≈ f (2.2)− f (2)
2.2−2

=
3.6−3.5

.2
=

1
2
;

f ′(2)≈ f (2)− f (1.8)
2−1.8

=
3.5−3.3

.2
= 1 ;

f ′(2)≈ f (2.2)− f (1.8)
2.2−1.8

=
3.6−3.3

.4
=

3
4
.

Remember that we have no reason to consider any of these approximate values
to be more accurate than the rest.

Now find an approximation for f ′′(2) :

f ′′(2)≈ f (2.2)−2 f (2)+ f (1.8)
.22 =−2.5 .

5.11. Use the table to find an approximate value of f ′(3) and f ′′(3) .

x 2.95 3 3.05

f (x) 1.07 1.12 1.18

figure 24
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5.12. The graph of f (x) , which consists of three line segments, is shown above.
Find f ′(−1.5) , f ′(1) , and f ′(2.5) .

5.2 Differentiation of explicit functions

Rules of differentiation

1.
(
k f (x)

)′
= k f ′(x) , where k is a constant;

2. (the sum rule)
(

f (x)+g(x)
)′
= f ′(x)+g′(x) ;
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3. (the product rule) ( f (x)g(x))′ = f ′(x)g(x)+ f (x)g′(x) ;

4. (the quotient rule)

(
f (x)
g(x)

)′
=

f ′(x)g(x)− f (x)g′(x)
g2(x)

;

4. (the chain rule)
(

f (g(x))
)′
= f ′g(g(x))g

′
x(x) .

Table of derivatives

1. (xn)′ = nxn−1 2. (ax)′ = ax lna, (ex)′ = ex

3. (loga x)′ =
1

x lna
, (lnx)′ =

1
x

4. (sinx)′ = cosx

5. (cosx)′ =−sinx 6. (tanx)′ =
1

cos2 x

7. (cotx)′ =− 1
sin2 x

8.
(
sin−1 x

)′
=

1√
1− x2

9.
(
cos−1 x

)′
=− 1√

1− x2
10.
(
tan−1 x

)′
=

1
1+ x2

11
(
cot−1 x

)′
=− 1

1+ x2

Example 5.3. Find the derivatives of the following functions:

a) y = x3 tan−1 x; b) y =
x2 + x−1

x3 +1
; c) y =

√
1+2tanx.

Solution. a) Using the product rule,

(
x3 tan−1 x

)′
= (x3)′ tan−1 x+ x3 (tan−1 x

)′
= 3x2 tan−1 x+

x3

1+ x2 .

b) Using the quotient rule,
(

x2 + x−1
x3 +1

)′
=

(x2 + x−1)′(x3 +1)− (x2 + x−1)(x3 +1)′

(x3 +1)2 =

=
(2x+1)(x3 +1)− (x2 + x−1)3x2

(x3 +1)2 =
−x4−2x3 +3x2 +2x+1

(x3 +1)2 .

c) Here it is necessary to use the chain rule. The “outer” function is
√

x ; the
“inner” function is 1+ 2tanx . Their derivatives are, respectively, 1/(2

√
x) and

2/cos2 x . Therefore, bearing in mind that the argument of the outer function is
1+2tanx ,

(√
1+2tanx

)′
=

1
2
√

1+2tanx
· 2

cos2 x
=

1
cos2 x

√
1+2tanx

.

Example 5.4. Find the derivative of xx .

Solution. This function cannot be differentiated in this form. It is first necessary to
rewrite it, in order to be able to use the table of elementary derivatives and the rules
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of differentiation:

xx = eln(xx) = ex lnx

Therefore,

(xx)′ =
(
ex lnx)′ = ex lnx (x lnx)′ = ex lnx (lnx+1) = xx (lnx+1) .

Find the derivatives of the following functions.

5.13. 5x2 +4x+2 5.14. (x2 +4x−12)10

5.15.
x+2
x+3

5.16.
1

(x2−4)4

5.17.
x2 +3x+2

2x2 +4x+3
5.18.

x2 +2x
x2 +1

5.19.
(x4 +1)3

(x3 +1)2 5.20.
x3 +2x+1
x3 +2x2 +1

5.21.
√

4− x2 5.22. (x2 +6)
√

x2−3

5.23. 3
√

(x3 +1)2 5.24.
3x+2√
2−3x

5.25.
x

3
√

x3 +1
5.26.

x2 + x
3
√

x2− x

5.27.
4
√

x+1
3
√

x+1
5.28.

√
x+1
x−1

5.29.

√
1

3
√

x+1
5.30.

1√
x+1+

√
x−1

5.31. − 1
25

x3(2−5x3)5/3− 3
1000

(2−5x3)8/3

5.32.
2− cosx
2+ cosx

5.33.
tanx−1

tanx

5.34. cos(4x2 +3x+4) 5.35.
√

cosx

5.36.
1√

cosx
5.37.

sin2 x
1+ sin2 x

5.38. tan(x3) 5.39.
√

cotx

5.40. sin(x2 + tanx) 5.41. tan(sinx)

5.42.
2
9

√
tan9 x+

2
5

√
tan5 x 5.43. x− tanx+

1
3

tan3 x

5.44. 2tan
x
2
− x+2 5.45. 2sin−1 x+3cos−1 x

5.46.
1

2
√

3
tan−1

(
2x4 +1√

3

)
5.47. tan−1 sinx
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5.48. sin−1√x−1 5.49. sin−1 x−1
x+1

5.50. tan−1 x2 +1
x2−1

5.51. tan−1 x+ cot−1 x

5.52. tan−1 x2 5.53. sin−1 x− x
√

1− x2

5.54. tan−1 x− x
1+ x2 5.55.

1
2

tan−1(sin2 x)

5.56.
(x2 +1)2

4
cot−1 x+

x3 +3x
12

5.57. (sin−1 x)2+2x
√

1− x2 sin−1 x−x2

5.58. ln(2x2 + x+1) 5.59. ln
x2 +1
x2−1

5.60. ln
√

x+1 5.61. ln3(x2 +1)

5.62. lnsinx 5.63.
2

ln2x

5.64. ln
(

x−
√

x2 +1
)

5.65. ln
√

1+ x
1− x

5.66. ln
x

1+
√

1+ x2
5.67. ln

√
x−1√
x+1

5.68. ln(x+ lnx) 5.69.
x2

2
ln(x4 +4)+2tan−1 x2

2
− x2

5.70. xe2x 5.71.
3x

3x +1

5.72.
ex

x+1
5.73. −1

2
ln2 x+1

x

5.74.
x2−1

2
ln

1+ x
1− x

+ x 5.75.
cosx

2
− 3
√

2
8

ln

√
2cosx−1√
2cosx+1

5.76. ln
(

tan
x
2

)
− cosx ln tanx 5.77. ex(sinx+ cosx)

5.78. (x+1)x2+1 5.79. (sinx)x

5.80. (sinx)sinx 5.81. (tanx)lnx

5.82. |x3| 5.83. |sin3 x|

5.84. If f (x) is differentiable at x = x0 , and g(x) is not, what can be said about
the differentiability of the functions f (x)+g(x) and f (x)g(x)?

5.85. If f (x) and g(x) are not differentiable at x = x0 , what can be said about the
differentiability of the functions f (x)+g(x) and f (x)g(x)?

5.86. Prove that the derivative of a periodic function is also periodic and has the
same period.

5.87. Prove that the derivative of an even function is odd, and that the derivative
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of an odd function is even.
5.88. Prove that the function

f (x) =





x2 sin
1
x
, x 6= 0;

0, x = 0

is differentiable for all x , but its derivative is not continuous.
5.89. Show that if a differentiable function has a discontinuous derivative, then

that discontinuity is of type II. (See the previous problem.)
5.90. Show that the function

f (x) =

{
x2, x≥ 0;

− x2, x < 0

is differentiable at x = 0 , but it is not twice differentiable at x = 0 .
5.91. Prove that the function y =− ln(x+1) satisfies the equation

xy ′+1 = ey.

5.92. Prove that the function y =
sin−1 x√

1− x2
satisfies the equation

(1− x2)y ′− xy = 1.

Define the constants a and b so that the following functions will be differentiable.

5.93. f (x) =

{
x2, x≤ 2;
ax+b, x > 2.

5.94. f (x) =

{
x2, x≤ x0;
ax+b, x > x0.

5.95. F(x) =

{
f (x), x≤ x0;
ax+b, x > x0,

where f (x) is differentiable at x0.

Find the following sums:
5.96. 1+2x+3x2 + . . .+nxn−1 .
5.97. 2+2 ·3x+3 ·4x2 + . . .+(n−1)nxn−2 .
5.98. Compare the derivatives of y = tan−1 1+x

1−x and y = tan−1 x . What is the
relationship between these two functions?

5.99. Prove that 2tan−1 x+ sin−1 2x
1+x2 = π signx for |x| ≥ 1 .

5.3 Differentiation of inverse functions

Definition. The inverse function of y = f (x) is the function x = f−1(y) ; in
other words,

f−1 ( f (x)) = x, or f (
(

f−1(x)
)
= x.
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Theorem. Suppose that f is a function which is differentiable on an open
interval containing x0 . If either f ′(x) > 0 or f ′(x) < 0 for all x in this
interval, then f has a differentiable inverse f−1 at y0 = f (x0) , and

d f−1

dy

∣∣∣∣
y=y0

=
1

d f
dx

∣∣∣
x=x0

, or x′(y0) =
1

y′(x0)
.

The condition that f ′(x)> 0 or f ′(x)< 0 for all x in an interval is actually a
way of making sure that f (x) has two required properties: it is differentiable and
one-to-one, i.e., for every value of y there can only be one value of x .

Example 5.5. Find the derivative of a) y = loga x and b) y = sin−1 x using the
formula for the derivative of the inverse function.

Solution. a) The inverse function for y = loga x is x = ay , and its derivative is
x′(y) = ay lna . Therefore, we have

y′(x) =
1

x′(y)
=

1
ay lna

=
1

x lna
.

b) The inverse function for y = sin−1 x is x = siny , and its derivative is
x′(y) = cosy . We should note, however, that it is necessary to restrict the domain of
the function x = siny so that we have a one-to-one function; the standard choice is
y ∈
[
−π

2 ,
π

2

]
.

According to the theorem,

(
sin−1 x

)′
=

1
(siny)′

=
1

cosy
=

1√
1− sin2 y

=
1√

1− x2
.

Note that due to the choice of y we have cosy≥ 0 , and it was for this reason that
we put cosy =

√
1− sin2 y .

Example 5.6. Find the derivative of f−1(x) at x = 22 , if f (x) = x4 + x3− x and
f−1(22) = 2 .

Solution. Denote x = 2 , y = 22 (so that 22 = 24 + 23− 2 ). According to the for-
mula,

d f−1

dy

∣∣∣∣
y=22

=
1

d f
dx

∣∣∣
x=2

=
1

4x3 +3x2−1

∣∣∣∣
x=2

=
1

43
.

Find the derivative of f−1(x) at x = 3.

5.100. f (x) = 2x3 +1 5.101. f (x) = x+ cosx+2

5.102. f (x) = x+ sinx+3 5.103. f (x) = 4− log2 x
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5.4 Implicit differentiation

Definition. An implicit function is defined by the equation F(x,y) = 0 .

The derivative of an implicit function can be found using the equality

d
dx

[F(x,y(x))] = 0.

Example 5.7. Find the derivative of the functions

a) x2 + y2−a2 = 0 ; b) y6− y− x2 = 0 ; c) y− x− 1
4

siny = 0 .

Solution. a) Differentiating by x ,

2x+2yy ′ = 0 ⇒ y ′ =−x
y
.

b) Differentiating by x ,

6y5y ′− y ′−2x = 0 ⇒ y ′ =
2x

6y5−1
.

c) Differentiating by x ,

y ′−1− 1
4
(cosy)y ′ = 0 ⇒ y ′ =

4
4− cosy

.

Find the derivative of the following implicit functions.

5.104. x2 +2xy− y2 = 2x 5.105.
x2

a2 +
y2

b2 = 1

5.106. x3 + y3−3axy = 0 5.107. y3−3y+2ax = 0

5.108. cos(xy) = x 5.109. x2/3 + y2/3 = a2/3

5.110. y = x+ tan−1 y 5.111. tan−1
(y

x

)
= ln

√
x2 + y2

5.112. Find y ′(0) , if y is given by the following system:

y(x) =





x2 cos
4
3x

+
x
2
, x 6= 0;

0, x = 0.

5.113. Prove that the function y(x) defined by the equation xy− lny = 1 also
satisfies the equation

y2 +(xy−1)
dy
dx

= 0.

5.114. Prove that if 1+ xy = k(x− y) , where k is some constant, then

dx
1+ x2 =

dy
1+ y2 .



36 CHAPTER 5. DERIVATIVES

5.5 Tangent and normal lines

The tangent line:

y = f ′(x0)(x− x0)+ f (x0)

0
x

y

x0

1

The normal line:

y =− 1
f ′(x0)

(x− x0)+ f (x0)

0
x

y

x0

1

If f ′(x0) = 0 , then the graph of f (x) has a hori-
zontal tangent line and a vertical normal line at x0 .

figure 28

0
x

y

x0

20

If lim
x→x0

f ′(x) = ∞ , then the graph of f (x) has a ver-

tical tangent line and a horizontal normal line at
x0 . Note that in this case f (x) is not differentiable
at x = x0 .

x

y

0                  x0

Definition. The function f (x) is smooth at x = x0 if the graph of f (x) has a
unique tangent line.

Note that a differentiable function is always smooth, but a smooth function
can have a vertical tangent line—and therefore it is not differentiable at that point.

Example 5.8. Find the equations of the tangent line and of the normal line drawn
to the graph of y = x3 at the point M(1,1) .

Solution. y ′(x) = 3x2 , so y ′(1) = 3 .

The tangent line: y = 3(x−1)+1 = 3x−2 .

The normal line: y =−1
3
(x−1)+1 =−1

3
x+

4
3
.
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Example 5.9. Find the equation of the tangent line drawn to the graph of y= x2 that
is a) parallel to the line y = 4x−5 ; b) perpendicular to the line 2x−6y+5 = 0 .

Solution. a) Parallel lines have equal slopes; the slope of the tangent line at x0 is
given by y ′(x0) = 2x0 . Therefore,

2x0 = 4 ⇒ x0 = 2 .

The equation of the tangent line at x0 = 2 is y = 4(x−2)+4 , or y = 4x−4 .

b) The product of the slopes of perpendicular lines is −1 . Therefore,

2x0 ·
1
3
=−1 ⇒ x0 =−

3
2
.

The equation of the tangent line is y =−3
(

x+
3
2

)
+

9
4
, or y =−3x− 9

4
.

5.115. Find the points on the curve y= x2(x−2)2 where the tangent line is parallel
to the x -axis.

5.116. Find the equations of the tangent lines drawn to the graph of y = x− 1
x at

the x -intercepts.
5.117. Find the equation of the tangent line drawn to the graph of y = sinx at the

point
(

3π

4 ,
√

2
2

)
.

5.118. Find the equation of the tangent line drawn to the graph of y = sinx at the
point (x0,y0) .

5.119. Find the equation of the tangent line drawn to the graph of y = 8a3

4a2+x2 at
the point where x = 2a .

5.120. Find all points on the curve y = 3x2 where the tangent line passes through
the point (2,9) .

5.121. A chord connects two points on the parabola y = x2−2x+5 with x–
coordinates x1 = 1 and x2 = 3 . Find the equation of the tangent line drawn to the
parabola that is parallel to the chord.

5.122. Show that the tangent lines drawn to the graph of y = x−4
x−2 at the x -intercept

and y -intercept are parallel.
5.123. Find the equations of the tangent lines drawn to the graph of y = x+9

x+5 so
that they go through the origin.

5.124. For what value of a will the curves y = ax2 and y = lnx be tangent to
each other?

5.125. At what angle does the graph of y = lnx intersect the x -axis?
5.126. Find the equation of the tangent line drawn to the graph of x2 = 4ay at the

point (x0,y0) if x0 = 2am .

5.127. Find the equation of the normal line drawn to the graph of y = x2−3x+6
x2 at

the point where x = 3 .
5.128. Find the points at which the tangent line drawn to the curve y = x3 + x−2

is parallel to the line y = 4x−1 .
5.129. Find the normal line drawn to the graph of y = x lnx which is parallel to

the line 2x−2y+3 = 0 .
5.130. Find the equation of the tangent line drawn to the graph of y = x3 +3x2−5

which is perpendicular to the line 2x−6y+1 = 0 .
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5.131. Find the equations of the tangent line and normal line drawn to the graph
of the function (x+1) 3

√
3− x at the points a) (-1,0); b) (2,3); c) (3,0).

5.132. Find the equations of the tangent line and normal line drawn to the curve
x2 +2xy2 +3y4 = 6 at the point M(1,−1) .

5.133. Prove that the parabola

y = a(x− x1)(x− x2),

where a 6= 0 , x1 6= x2 , intersects the x -axis at acute angles α and β , where α = β .
5.134. Find the angle between the left and right tangent lines drawn to the graph

of the function

f (x) = sin−1
(

2x
1+ x2

)

at the point x = 1 .

5.6 The differential

Definition. The differential of f (x) is given by d f = f ′(x)dx .

If x is sufficiently close to x0 and f (x0) is known, then differentials can be
used to find an approximate value of f (x) :

f (x)≈ f (x0)+d f = f (x0)+ f ′(x0)(x− x0).

Note that this can also be understood as the tangent line approximation of f (x)
at x = x0 .

Example 5.10. Using differentials, find the approximate value of 20.12 .

Solution. Consider the function f (x) = x2 . The differential of this function is
d f = 2xdx . At x0 = 20 , f (x0) = 400 and f ′(x0) = 40 . Therefore,

20.12 ≈ 400+40 ·0.1 = 404.

Using differentials, find the approximate value of the following expressions. Com-
pare your results to the exact values.

5.135.
√

120 5.136. 4
√

80

5.137. log11 5.138. sin
(

π

6 +
π

100

)

5.139. cos(151◦) 5.140.
√

2.0272−3
2.0272+5
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5.7 Rolle’s Theorem and the Mean Value Theorem

Theorem (Rolle’s Theorem)

If f (x) is continuous on [a,b] , differentiable on (a,b) , and f (a) = f (b) , then
there exists c ∈ (a,b) such that f ′(c) = 0 .

The geometrical interpretation of Rolle’s Theorem
is that if a function is differentiable and assumes
the same value at the ends of an interval, then there
is a point where the tangent line drawn to the graph
of f (x) is horizontal.

x

y

c ba0

1

Theorem (The Mean Value Theorem)

If f (x) is continuous on [a,b] , differentiable on (a,b) , then there exists

c ∈ (a,b) such that f ′(c) =
f (b)− f (a)

b−a
.

The geometrical interpretation of the Mean Value
Theorem can be given as follows. If a secant line
is drawn between any two points on the graph of
a differentiable function, there exists a point on the
graph between these two points at which the tan-
gent line to the graph of f is parallel to the secant. x

y

c ba0

f (a)

f (b)

1

5.141. Check the validity of Rolle’s Theorem for the function

f (x) = (x−1)(x−2)(x−3).

5.142. Check the validity of Rolle’s Theorem for the function

f (x) = 3
√

x2−3x+2

on the interval [1,2] .
5.143. Without finding the derivative of the function

f (x) = (x−1)(x−2)(x−3)(x−4),

determine how many roots the equation f ′(x) = 0 has and find the intervals where
they are located.

5.144. The function f (x) = 1−x2

x4 equals zero at x =−1 and x = 1 , and yet
f ′(x) 6= 0 for all values of x , −1 < x < 1 . Explain this seeming contradiction to
Rolle’s Theorem.

5.145. The function f (x) = 1− 3√x2 equals zero at x =−1 and x = 1 , and yet
f ′(x) 6= 0 for all values of x , −1 < x < 1 . Explain this seeming contradiction to
Rolle’s Theorem.

5.146. Write the Mean value Theorem for the function f (x) = x(1− lnx) on the
interval [a,b] (a > 0) .
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Find the number in the given interval that satisfies the conclusion of the Mean
Value Theorem.

5.147. f (x) = x2−5x+7, x ∈ [−1,3]

5.148. f (x)= x3−6x2+9x+2, x∈ [0,4]

5.149. f (x) = x4−16x2 +2, x ∈ [−1,3]

5.150. Consider the function

f (x) =





3− x2

2
, 0≤ x≤ 1;

1
x
, x > 1.

Find all points c , 0 < c < 2 , guaranteed by the Mean Value Theorem for the line
segment [0,2] . Explain in detail why the Mean Value Theorem is applicable.

5.151. Using the Mean Value Theorem, prove that

a−b
a

< ln
a
b
<

a−b
b

,

where 0 < b < a .
5.152. Using the Mean Value Theorem, prove that

α−β

cos2 β
≤ tanα− tanβ ≤ α−β

cos2 α
,

where 0 < β ≤ α <
π

2
.

5.153. Show that the functions f (x) = tan−1 (1+x
1−x

)
and g(x) = tan−1 x have the

same derivative for x 6= 1 . Find the relationship between these functions.
5.154. Using the Mean Value Theorem, prove that

a) 2tan−1 x+ sin−1
(

2x
1+ x2

)
= π signx, |x| ≥ 1;

b) 3cos−1 x− cos−1(3x−4x3) = π, |x|< 0.5.

5.155. Prove that if f (x) is continuous and differentiable on [a,b] and f (x) is
not a linear function, then there is at least one point c on the open interval (a,b) such
that ∣∣ f ′(c)

∣∣>
∣∣∣∣

f (b)− f (a)
b−a

∣∣∣∣ .
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APPLICATIONS OF THE DERIVATIVE

6.1 L’Hospital’s Rule

One of the most important methods for calculating limits is L’Hospital’s rule.

I. The indeterminate forms

(
0
0

)
and

(
∞

∞

)
.

If lim
x→a

f (x)
g(x)

cannot be found directly, such as when (1) lim
x→a

f (x) = 0 and

lim
x→a

g(x) = 0 , giving rise to the indeterminate form
(0

0

)
, or (2) lim

x→a
f (x) = ∞ and

lim
x→a

g(x) = ∞ , giving rise to the indeterminate form
(

∞

∞

)
, then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

,

assuming that the second limit exists or equals infinity. If necessary, L’Hospital’s
rule can be used several times in succession. Note also that L’Hospital’s rule
remains valid for x→ ∞ .

Remember that L’Hospital’s rule can only be used for indeterminate forms!

Example 6.1. Find a) lim
x→1

x3−1
lnx

; b) lim
x→+∞

π

2 − tan−1 x

ln(1+ 1
x2 )

; c) lim
x→+∞

x2

ex .

Solution. a) Since lim
x→1

(x3−1) = 0 and lim
x→1

lnx = 0 , we can use L’Hospitals’ rule:

lim
x→1

x3−1
lnx

= lim
x→1

3x2

1
x

= lim
x→1

3x3 = 3.

b) Since lim
x→+∞

tan−1 x =
π

2
, it is again necessary to use L’Hospital’s rule:

lim
x→+∞

π

2 − tan−1 x

ln(1+ 1
x2 )

= lim
x→+∞

− 1
1+x2

1
1+1/x2

(
− 2

x3

) = lim
x→+∞

1
1+ x2 ·

x2 +1
x2 · x

3

2
=+∞ .

c) Here we have an indeterminate form of the type
(

∞

∞

)
, and L’Hospital’s rule

can be used. Note that it is necessary to use L’Hospital’s rule twice:

lim
x→+∞

x2

ex = lim
x→+∞

2x
ex = lim

x→+∞

2
ex =

[
2
+∞

]
= 0.
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II. The indeterminate forms (0 ·∞) and (∞−∞) .

If lim
x→a

f (x) = 0 and lim
x→a

g(x) =∞ , then finding lim
x→a

f (x)g(x) involves dealing

with the indeterminate form (0 ·∞) .

If lim
x→a

f (x) = +∞ and lim
x→a

g(x) = +∞ , then the limit lim
x→a

(
f (x)−g(x)

)

is also indeterminate and can be expressed as (∞−∞) . Note that this
limit will also be indeterminate if lim

x→a
f (x) = −∞ and lim

x→a
g(x) = −∞ .

On the other hand, if lim
x→a

f (x) = +∞ and lim
x→a

g(x) = −∞ , then

lim
x→a

(
f (x)−g(x)

)
= (+∞− (−∞)) = +∞ , and this limit is not an indeterminate

form.

These limits can be reduced to the indeterminate forms
(0

0

)
or
(

∞

∞

)
by alge-

braic transformations, after which they can be calculated using L’Hospital’s rule.

Example 6.2. Find the following limits:

a) lim
x→π/2

(
x− π

2

)
tanx ; b) lim

x→1

(
1

lnx
− 1

x−1

)
; c) lim

x→+∞

(
ex− x2) .

Solution. a) It is enough to use trigonometric transformations here:

lim
x→π/2

(
x− π

2

)
tanx = lim

x→π/2

x− π

2
cotx

= lim
x→π/2

1
− 1

sin2 x

=− lim
x→π/2

sin2 x =−1 .

b) Simplifying,

lim
x→1

(
1

lnx
− 1

x−1

)
= lim

x→1

x−1− lnx
(x−1) lnx

= lim
x→1

1− 1
x

lnx+ x−1
x

= lim
x→1

x−1
x lnx+ x−1

.

Using L’Hospital’s rule a second time,

lim
x→1

x−1
x lnx+ x−1

= lim
x→1

1
lnx+1+1

=
1
2
.

Therefore, lim
x→1

(
1

lnx
− 1

x−1

)
=

1
2
.

c) We will use algebraic transformations to find this limit:

lim
x→+∞

(
ex− x2)= lim

x→+∞
ex
(

1− x2

ex

)

The limit of the expression in parenthesis is

lim
x→+∞

(
1− x2

ex

)
= 1− lim

x→+∞

2x
ex = 1− lim

x→+∞

2
ex = 1−0 = 1 .

Therefore, since lim
x→+∞

ex =+∞ , lim
x→+∞

ex
(

1− x2

ex

)
= [+∞ ·1] = +∞ .
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III. The indeterminate form (1∞) .

If lim
x→a

f (x) = 1 and lim
x→a

g(x) = ∞ , then finding lim
x→a

f (x)g(x) involves dealing

with the indeterminate form (1∞) .
This problem can be reduced to the indeterminate form (0 ·∞) (which in its

turn can be reduced to the form (0
0) or (∞

∞
) ) by using the properties of the

exponential function:

f (x)g(x) = eln f (x)g(x)
= eg(x) ln f (x).

(The function g(x) approaches infinity, while f (x) approaches 1 and so ln f (x)
approaches 0 .)

Example 6.3. Find lim
x→0

(
ex−1

x

) 1
sinx

.

Solution. This expression is an indeterminate form of the type (1∞) at x = 0 ,
because lim

x→0
ex−1

x = 1 and lim
x→0

1
sinx = ∞ .

Transforming the expression gives

lim
x→0

(
ex−1

x

) 1
sinx

= lim
x→0

e
ln( ex−1

x )
sinx = e

lim
x→0

ln(ex−1)−lnx
sinx .

Thus, the problem reduces to finding the limit

lim
x→0

ln(ex−1)− lnx
sinx

= lim
x→0

ex

ex−1 − 1
x

cosx
= lim

x→0

xex− ex +1
x(ex−1)

=

= lim
x→0

ex + xex− ex

ex + xex−1
= lim

x→0

xex

xex + ex−1
= lim

x→0

1
1+ ex−1

xex

=
1

1+1
=

1
2
.

Therefore, the answer is

lim
x→0

(
ex−1

x

) 1
sinx

=
√

e.

Find the following limits using L’Hospital’s rule.

6.1. lim
x→1

x3−3x2 +2
x3−4x2 +3

6.2. lim
x→0

sinax
sinbx

6.3. lim
x→0

tanx− x
x− sinx

6.4. lim
x→π/4

3
√

tanx−1
2sin2 x−1

6.5. lim
x→a

ax− xa

x−a
6.6. lim

x→0

ln(sinax)
ln(sinbx)

6.7. lim
x→1

x2−1+ lnx
ex− e

6.8. lim
x→1

ln(x−1)
cotπx

6.9. lim
x→0

ex− e−x

ln(1+ x)
6.10. lim

x→0

(a+ x)x−ax

x2
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6.11. lim
x→∞

xn

eax (a,n > 0) 6.12. lim
x→0+

xε lnx (ε > 0)

6.13. lim
x→0

x− sinx
x3 6.14. lim

x→0

(
1
x
− 1

ex−1

)

6.15. lim
x→1

(
1

lnx
− 1

x−1

)
6.16. lim

x→0

e3x−3x−1
sin2 5x

6.17. lim
x→0

ax−asinx

x3 6.18. lim
x→0

(
1
x2 − cot2 x

)

6.19. lim
x→0

sin3x−3xex +3x2

tan−1 x− sinx− x3/6
6.20. lim

x→0
(1− cosx)cot2 x

6.21. lim
x→∞

(x+2x)1/x 6.22. lim
x→0

(
tanx

x

)1/x2

6.23. lim
x→∞

(
tan

πx
2x+1

)1/x

6.24. lim
x→0

x(ex +1)−2(ex−1)
x3

6.25. lim
x→∞

π−2tan−1 x
e3/x−1

6.26. lim
x→0

(
sin−1 x

x

)1/x2

6.27. lim
x→0

(
(1+ x)1/x

e

)1/x

6.28. lim
x→0

(
2cosx

ex + e−x

)1/x2

Check that L’Hospital’s rule is not applicable to the following limits:

6.29. lim
x→0

x2 sin 1
x

sinx
6.30. lim

x→∞

x− sinx
x+ sinx

6.31. Find the value of the limit

lim
h→0

f (x−h)−2 f (x)+ f (x+h)
h2 ,

assuming it exists.

6.2 Monotonicity

Definition. The function f (x) is strictly increasing on (a,b) , if for any points
x1 and x2 (x1 < x2 ) on this interval we have f (x1)< f (x2) .

Definition. The function f (x) is strictly decreasing on (a,b) , if for any points
x1 and x2 (x1 < x2 ) on this interval we have f (x1)> f (x2) .

Theorem. If the differentiable function f (x) is strictly increasing on (a,b) ,
then f ′(x)≥ 0 for all x ∈ (a,b) .

Theorem. If f ′(x) > 0 for all x ∈ (a,b) , then f (x) is strictly increasing on
(a,b) .
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Analogous theorems can be proven for decreasing functions.

Important: Note that a strictly increasing function can have a zero derivative at
isolated points. This behavior is exhibited, for instance, by the function f (x) = x3 .
This function is strictly increasing for all x , and yet f ′(0) = 0 .

The same is true for strictly decreasing functions.

Example 6.4. Find the intervals on which the function f (x) = 3x4−4x3−12x2+2
is increasing and decreasing.

Solution. First find the derivative:

f ′(x) = 12x3−12x2−24x = 12x(x2− x−1) = 12x(x+1)(x−2).

Critical points: f ′(x) = 0 or f ′(x) 6 ∃ :
12x(x+1)(x−2) = 0 ⇒ x1 = 0; x2 =−1, x3 = 2 .

Check the sign of the derivative:

| | |

−1 0 2
x

f ′(x)

f (x)

− + − +0 0 0

1

We see that f ′(x) is positive for x ∈ (−1,0) and for x ∈ (2,∞) , while f ′(x)
is negative for x ∈ (−∞,−1) and x ∈ (0,2) . Therefore, f (x) is increasing for
x ∈ (−1,0)∪ (2,+∞) and decreasing for x ∈ (−∞,−1)∪ (0,2) .

Find the intervals on which the functions are strictly increasing or decreasing.

6.32. f (x) = 3x− x3 6.33. f (x) = x4−2x2−5

6.34. f (x) = (x−2)5(2x+1)4 6.35. f (x) =
2x

1+ x2

6.36. f (x) =
√

x
x+100

6.37. f (x) = x− ex

6.38. f (x) = (x+1)e−x 6.39. f (x) = x2e−x

6.40. f (x) = x2− ln(x2) 6.41. f (x) =
x

lnx

6.42. f (x) = x+ cosx 6.43. f (x) =
x2

2x

6.44. f (x) = 2sinx+ cos2x (0≤ x≤ 2π)

6.45. f (x) = x+ |sin2x|
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6.3 Related rates

Problems in related rates deal with the change of various quantities (physical
or geometrical) with time.

Definition. The rate of change of a quantity is the derivative of that quantity
with respect to time.

Always remember to include units of measurement!!

Position, Velocity, Acceleration (P.V.A.)

Definition. The position of a particle moving along the x -axis is given by the
function x(t) .

Definition. The velocity of a particle moving along the x -axis is given by
dx
dt
.

Definition. The speed of a particle moving along the x -axis is given by
∣∣∣∣
dx
dt

∣∣∣∣ .

Definition. The acceleration of a particle moving along the x -axis is given by
d2x
dt2 or

dv
dt
.

Analogous definitions are valid for movement along the y -axis.

Example 6.5. A rectangle has sides of 20 and 40 inches, respectively. The larger
sides of the rectangle begin to shrink at a rate of 2 inches per second. How fast is
the area of the rectangle changing at this moment?

Solution. Let a be the length of the smaller sides of the rectangle and b be the
length of the larger sides. Since b is decreasing, we have

db
dt

=−2. (inches per second)

Note that a remains constant, so

da
dt

= 0. (inches per second)

The area of the rectangle is given by A = ab , so its rate of change is given by
dA
dt

=
d
dt
(ab) =

da
dt

b+a
db
dt

=−2a. ( in2 per second)

At the instant when a = 20 inches and b = 40 inches,

dA
dt

∣∣∣∣∣∣ a=20

b=40

=−40. ( in2 per second)

Example 6.6. The hypotenuse of a right triangle is increasing at the rate of 4 inches
per minute, while all the angles in the triangle remain constant. At the instant when
the sides of the triangle are 10 , 10

√
3 and 20 inches, determine a) how fast the

perimeter of the triangle is changing; b) how fast the area of the triangle is changing.
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Solution. Let a , b and c be the lengths of the sides of the triangle, as shown
below. Note that the angles in the triangle are 30◦ , 60◦ and 90◦ .figure 25

a

b
c

60◦

18

According to the problem,
dc
dt

= 4 inches per minute. The perimeter of the

triangle equals P = a+b+ c , so
dP
dt

=
da
dt

+
db
dt

+
dc
dt
. (inches per minute)

Find the rate of change of a :

a = c · cos(60◦) =
c
2
⇒ da

dt
=

1
2

dc
dt

= 2 . (inches per minute)

Find the rate of change of b :

b = c · sin(60◦) =

√
3

2
c ⇒ db

dt
=

√
3

2
dc
dt

= 2
√

3 . (inches per minute)

Therefore,

dP
dt

= 2+2
√

3+4 = 6+2
√

3 . (inches per minute)

Note that the rate of change of the perimeter is constant.

It is easiest to find the rate of change of the area of the triangle by using the

formula A =
1
2

ab , so

dA
dt

=
1
2

(
da
dt

b+a
db
dt

)
= b+

√
3a . ( in2 per minute)

Therefore,

dA
dt

∣∣∣∣∣∣ a=10

b=10
√

3

= 20
√

3. ( in2 per minute)

Example 6.7. A particle is moving along the curve y = x2 so that its x -coordinate
is increasing at a constant rate of 3 units per second. How fast is its y -coordinate
changing at the instant when x = 4?

Solution. Using the chain rule, y = y
(
x(t)
)
,

dy
dt

=
dy
dx
· dx

dt
= 2x

dx
dt

= 6x. (units per second)

Therefore, when x = 4 the y -coordinate is increasing at a rate of
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dy
dt

∣∣∣∣
x=4

= 24. (units per second)

6.46. The radius of a circle is decreasing at a constant rate of 0.1 centimeter per
second. In terms of the circumference C , what is the rate of change of the area of the
circle, in square centimeters per second?

6.47. A ship is 400 miles directly south of Tahiti and is sailing south at 20 miles
per hour. Another ship is 300 miles east of Tahiti and is sailing west at 15 miles per
hour. At what rate is the distance between the ships changing?

6.48. Two steamships leave a port at the same time. The first one moves straight
north at a speed of 20 miles per hour, while the second moves west at a speed of 25
miles per hour. How fast is the distance between them changing one hour later?

6.49. A man on a pier pulls in a rope attached to a small boat at the rate of 1 foot
per second. If his hands are 10 feet above the place where the rope is attached, how
fast is the boat approaching the pier when there is 20 feet of rope out?

6.50. A cylindrical swimming pool is being filled from a fire hose at the rate of
5 cubic feet per second. If the pool is 40 feet across, how fast is the water level
increasing when the pool is one third full?

6.51. A cube is contracting so that its surface area is decreasing at the constant
rate of 72 in

2

sec . Determine how fast the volume is changing, in cubic inches per second,
at the instant when the surface area is 54ft2 . (1 foot equals 12 inches.)

6.52. A sphere is increasing in volume at the rate of 16π
cm3

sec . At what rate is
its radius changing when the radius is 3cm? (The volume of a sphere is given by
V = 4

3πR3 .)
6.53. How fast are the area and diagonal of a rectangle changing when one side

is 20ft and the second is 15ft, if the first side is shrinking at a rate of 1 ft
sec and the

length of the second side is increasing at a rate of 2 ft
sec ?

6.54. A bird is flying in a straight line east at 25 ft
sec . An observer is 15 ft to the

south of the spot where the bird began to fly. Consider the angle formed by the line
connecting the bird and the observer and the line connecting the bird and its initial
position. Find the rate of change (in radians per second) of the angle when the bird
has flown 20 ft.

6.55. Cement is poured so that it continuously forms a conical pile, the height of
which is twice the radius of the base. If the cement is being poured at the rate of
12 cubic feet per second, how fast is the height of the pile changing when it is 4 feet
high? (The volume of a cone is given by V = π

3 R2h .)
6.56. The resistance of a parallel electric circuit R is given by

1
R
=

1
R1

+
1

R2
.

If R1 is increasing at a rate of 0.5 ohm per second and R2 is decreasing at a rate of
0.4 ohm per second, how fast is R changing when R1 = 200ohm and R2 = 300ohm?

6.57. A clay cylinder is being compressed so that its height is changing at the rate
of 4 milimeters per second, and its diameter is increasing at the rate of 2 milimeters
per second. Find the rate of change of the area of the horizontal cross-section of the
cylinder when its height is 1 centimeter.
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6.4 Convexity and concavity

The geometric concepts of convexity and concavity

The function f (x) is concave up or convex on
(a,b) if the graph of f (x) is located not higher
than any of its secant lines.

x

y

0 a b

1

The function f (x) is concave down or concave on
(a,b) if the graph of f (x) is located not lower than
any of its secant lines.

x

y

0 a b

1

Note that these concepts do not require the function to have a second deriva-
tive, or even, for that matter, to be continuous!

Algebraic formulation of concavity and convexity

Definition. A function is convex on (a,b) if the inequality

f
(
αx+(1−α)y

)
≤ α f (x)+(1−α) f (y)

is satisfied for any two points x and y from (a,b) and any α in [0,1] .

Definition. A function is strictly convex on (a,b) if the inequality

f
(
αx+(1−α)y

)
< α f (x)+(1−α) f (y)

is satisfied for any two points x and y from (a,b) and any α in (0,1) .

Analogous definitions hold for (strictly) concave functions.
The expression αx+(1−α)y for α ∈ [0,1] is simply the interval [x,y] ; for

α = 0 this expression equals y , and for α = 1 it equals x . In the same way, the
expression α f (x)+(1−α) f (y) for α ∈ [0,1] is simply the interval [ f (x), f (y)] .
The relationship between the geometrical intuition and the algebraic definition is
shown on the figure below.

x

y

0 x
(α = 1)

y
(α = 0)

f (x)

f (y)

αx+(1−α)y
(0 < α < 1)

f
(
αx+(1−α)y

)
α f (x)+(1−α) f (y)

1
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Graphical interpretation for smooth functions

A function that is strictly concave up on (a,b) will
have a graph that is located above all of its tangent
lines.

x

y

0 a b

1

A function that is strictly concave down on (a,b)
will have a graph that is located below all of its
tangent lines.

x

y

0 a b

1

Theorem. If the twice-differentiable function f (x) is concave up on (a,b) ,
then f ′′(x)≥ 0 for all x ∈ (a,b) .

Theorem. If f ′′(x)> 0 for all x ∈ (a,b) , then f (x) is concave up on (a,b) .

Analogous theorems can be proven for functions that are concave down.

Important: Note that a function that is concave up or concave down can have
a zero second derivative at isolated points. This behavior is exhibited, for in-
stance, by the function f (x) = x4 . This function is concave up for all x , and yet
f ′′(0) = 0 .

Definition. If f (x) is continuous at x = x0 and
its concavity changes at that point, i.e. f ′′(x)
changes its sign at x = x0 , then x = x0 is a
point of inflection of f (x) .

x

y

0 x0

1

Example 6.8. Find the intervals on which the function f (x) = 3x2− x3 is concave
upward and concave downward, and determine the inflection points.

Solution. First find the second derivative: f ′(x) = 6x− 3x2 ; f ′′(x) = 6− 6x . We
see that the second derivative equals zero at x = 1 .

Now check the sign of the second derivative:

|

1
x

f ′′(x) + −0

Therefore, the graph of f (x) is concave up for x ∈ (−∞,1) and concave down
for x ∈ (1,+∞) ; at x = 1 this function has an inflection point.
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Find the intervals on which the function is concave upward and concave down-
ward, and determine the inflection points.

6.58. f (x) = x3−5x2 +3x−5 6.59. f (x) = (x+2)6 +2x+4

6.60. f (x) = x4−12x3 +48x2−50 6.61. f (x) = x+ x5/3

6.62. f (x) =
√

1+ x2 6.63. f (x) = (x+1)4 + ex

6.64. f (x) =
x3

x2 +3a2 (a > 0) 6.65. f (x) = ln(1+ x2)

6.66. f (x) = e−x2
6.67. f (x) = xx (x > 0)

6.68. f (x) = lnsinx

6.69. Show that the function

y =
x+1
x2 +1

has three inflection points, all of which lie on the same line.
6.70. Show that the inflection points of the function y = xsinx lie on the curve

y2(4+ x2) = 4x2.

6.71. Show that the graphs of y =±e−x and y = e−x sinx have the same tangent
lines at the inflection points of y = e−x sinx .

6.72. For what value of h will the probability density curve

y =
h√
π

e−h2x2
, h > 0

have inflection points at x =±σ ?
6.73. Find the values of a and b such that the function y = ax3 +bx2 has an

inflection point at (1,3) .
6.74. For what values of a will the function y = ex +ax3 have inflection points?
6.75. Prove that there must be at least one inflection point between two extreme

points of any twice-differentiable function.
6.76. Let f (x) be a function satisfying the following conditions:

• f ′′(x) is continuous for all x ;

• f (x) is constant on the interval x < 0 ;

• f (1) = 1 and f (2) = 2 .

a) Show that there is point a such that f ′(a) = 1 . b) Show that for all k , 0 < k ≤ 1
2 ,

there exists c such that f ′′(c) = k .
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6.5 Optimization

Definition. The function f (x) has a local maximum at x = x0 if there exists
an interval (a,b) containing x0 such that f (x0)> f (x) for all other points in
(a,b) .

An analogous definition can be given for a local minimum. Local extremes
(minimums and maximums) are also sometimes called relative extremes.

Note that this definition is not applicable to the endpoints of the domain. This
definition demands that the function is defined on an open interval containing the
local extreme; this assumption will not work if the point being considered is an
endpoint.
Definition. If f (x0) exists and the derivative of f (x) equals zero or is nonexis-

tent at x = x0 , then x0 is a critical point of f (x) .

Theorem (Necessary condition for the existence of a local extreme)

If f (x) attains a local maximum or minimum at x = x0 and f ′(x) exists at
x = x0 , then f ′(x0) = 0 .

Theorem (First-order sufficient condition for the existence of a local

extreme)

If x0 is a critical point and f ′(x) changes its sign at x = x0 , then f (x0) is
either a local minimum or a local maximum.

Theorem (Second-order sufficient condition for the existence of a local

extreme)

Let f ′(x0) = 0 . If f ′′(x0)> 0 , then f (x0) is a local minimum; if f ′′(x0)< 0 ,
then f (x0) is a local maximum. If f ′′(x0) = 0 or does not exist, then the
second-order condition cannot be used.

Example 6.9. Find all local minimums and maximums of the function f (x) =
x2/3

x+2
using the first order sufficient condition.

Solution. This function exists for all x 6=−2 . The derivative is

f ′(x) =
2
3x−1/3(x+2)− x2/3

(x+2)2 =
2x+4−3x

3x1/3(x+2)2
=

4− x
3x1/3(x+2)2

The critical points of this function are x1 = 0 and x2 = 4 . Note that x =−2 is
not a critical point, but should be included in the following analysis to keep track
of the derivative’s sign.

| | |

−2

�∃

0

0

4

0
x

f ′(x)

f (x)

− − + −

� ∃ min max
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Since f ′(x) changes from negative to positive at x = 0 , f has a local minimum
f (0) = 0 ; as f ′(x) changes from positive to negative at x = 4 , f has a local
maximum f (4) = 3

√
2/3 .

Example 6.10. Find all local minimums and maximums of the function
f (x) = x3−3x2 +1 using the second order sufficient condition.

Solution. The derivative of f (x) is

f ′(x) = 3x2−6x .

Critical points are x = 0 and x = 2 . The second derivative is

f ′′(x) = 6x−6 .

At x = 0 we have f ′′(0) =−6 < 0 , so f (0) = 1 is a local maximum. At x = 2
we have f ′′(2) = 6 > 0 , so f (2) =−3 is a local minimum.

Find all local minimums and maximums of the following functions.

6.77. f (x) = 2x2− x4 6.78. f (x) =
2x

1+ x2

6.79. f (x) = (x−2)2/3(2x+1) 6.80. f (x) =
x2−3x+2
x2 +2x+1

6.81. f (x) =
3x2 +4x+4
x2 + x+1

6.82. f (x) = x 3
√

x−1

6.83. f (x) =
√

2x− x2 6.84. f (x) =
1

ln(x4 +4x3 +30)

6.85. f (x) = tan−1 x− 1
2

ln(1+ x2)

Definition. The function f (x) has a global maximum at x = x0 if f (x0)≥ f (x)
for all x in the domain of f (x) .

An analogous definition can be given for a global minimum. Global extremes
are also sometimes called absolute extremes.

An enormously important theorem for finding global extremes is the Extreme
Value Theorem (see page 25), which states that a continuous function on a closed
interval must attain its minimum and maximum values. It is important to remem-
ber that global extremes are often found at the endpoints of the closed interval.

Theorem (Sufficient condition for a global extreme)

If f ′(x0) = 0 and f ′′(x) > 0 ( f ′′(x) < 0 ) for all x , then f (x0) is a global
minimum (global maximum).

In other words, if the function is concave up everywhere on the interval and
has a critical point, then it has a global minimum at the critical point and a global
maximum at one of the endpoints. If the function is concave down everywhere on
the interval and has a critical point, then it has a global maximum at its critical
point and a global minimum at one of the endpoints.
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Example 6.11. Find the global extremes of f (x) = x2−4x on the interval [−2,5] .

Solution. First find the critical points:

f ′(x) = 2x−4; f ′(x) = 0 ⇔ x = 2.

The second derivative is f ′′(x) = 2 , so f ′′(x) > 0 for all x . Therefore,
f (2) =−4 is the global minimum of f (x) .

In order to find the global maximum, we will consider the values of f (x) at the
endpoints: f (−2) = 12 , f (5) = 5 . Therefore, the global maximum is f (−2) = 12 .

In the general case, when f (x) is neither concave up nor concave down every-
where on the interval, the sufficient condition for a global extreme can not be used.
It is necessary to find all local extremes and then compare them to the values of the
function at the endpoints of the interval, i.e. at x = a and x = b .

Note that a continuous function on an open interval might have only local extremes
and no global extremes. In order to find the global extremes of a continuous function
on an open interval, it is necessary to find all local extremes and investigate the
behavior of the function as x approaches the endpoints of the interval.

Example 6.12. Find the global extremes of f (x)= x3−3x on the interval [−3,
√

3] .

Solution. First find the critical points:

f ′(x) = 3x2−3 ; f ′(x) = 0 ⇔ x =±1 .

Use the first derivative test to find the local extremes:

||

1

0

min

x
f ′(x) + − +

f (x)
√

3−1

max

0

−3

As f ′(x) changes from positive to negative at x = −1 , f has a local maximum
f (−1) = 2 ; as f ′(x) changes from negative to positive at x = 1 , f has a local
minimum f (1) = −2 . The values of f (x) at the endpoints are f (−3) = −18 and
f (
√

3) = 0 . Therefore, the absolute minimum of f (x) on the interval [−3,
√

3] is
at −3 and equals −18 , while the absolute maximum of f (x) is at −1 and equals
2 .

Find the global minimum and maximum values of the following functions on the
given interval.

6.86. f (x) = x2−4x+6, x ∈ [−3,10] 6.87. f (x) = x2−5x+7, x ∈ [−1,3]

6.88. f (x) = x3−6x2+9x+2, x ∈ [0,4]

6.89. f (x) = x5 − 5x4 + 5x3 + 1,
x ∈ [−1,2]

6.90. f (x) =
x−1
x+1

, x ∈ [0,4] 6.91. f (x) =
1− x+ x2

1+ x− x2 , x ∈ [0,1]

6.92. f (x) =
√

5−4x, x ∈ [−1,1] 6.93. f (x) = sin2x− x, x ∈
[
−π

2
,
π

2

]
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6.94. f (x) = ln(x2+2x+4), x ∈ [−4,3]

6.95. f (x)=
∣∣x2−3x+2

∣∣, x∈ [−10,10]6.96. f (x) = 3
√

(x2−2x)2, x ∈ [0,3]

6.97. f (x) = tan−1
(

1− x
1+ x

)
, x ∈ [0,1] 6.98. f (x) = xx, x ∈ [0.1,∞)

6.99. Find two nonnegative numbers whose sum is 9 so that the product of one
number and the square of the other number is the maximum possible.

6.100. Determine the maximum acceleration attained on the interval 0≤ t ≤ 3 by
a particle whose velocity in meters per second is given by v(t) = t3−3t2 +12t +4 .
Indicate units of measure.

6.101. Of all lines tangent to the graph of y = 6
x2+3 , find the tangent lines with

the minimum and maximum slope.
6.102. The area of a rectangle is 25 square feet. What are the lengths of its sides,

if its perimeter is minimal?
6.103. The sum of the height and radius of a closed cylinder is equal to 20 inches.

Find a) the maximum possible volume and b) the maximum possible surface area of
the cylinder.

6.104. Find the acute angles of the right triangle with the maximum possible area,
if the sum of one leg and the hypotenuse is constant.

6.105. Find the maximum volume of a right cone that has a side length of L .
6.106. The daily cost of running a ship equals $800 plus one twentieth of the cube

of the ship’s speed. What speed will minimize the cost of running the ship?
6.107. A truck has a minimum speed of 10 m.p.h. in high gear. When traveling

at x m.p.h, the truck burns diesel at the rate of 1
3

(900
x + x

) gal
mile . The truck cannot

go faster than 50 m.p.h. If diesel is $2 per gallon, find a) the steady speed that will
minimize the cost of fuel for a 500 mile trip; b) the steady speed that will minimize
the cost of a 500 mile trip if the driver is paid $15 an hour.

6.108. A closed rectangular container with a square base is to be made from two
different materials. The material for the base costs $5 per square meter, while the
material for the other five sides costs $1 per square meter. Find the dimensions of the
container that has the largest possible volume if the total cost of materials is $72.

6.109. There are 50 apple trees in an orchard. Each tree produces 800 apples. For
each additional tree planted in the orchard, the output per tree drops by 10 apples.
How many trees should be added to the existing orchard in order to maximize the
total output of the trees?

6.110. A railroad company can run a train only with a minimum of 200 passengers.
The fare will be $8 and decreased by 1 cent for each person over the 200 minimum
requirement. How many passengers must travel for maximum revenue?

6.111. Find the dimensions of the rectangle of the largest area that can be inscribed
in the closed region bounded by the x -axis, y -axis, and the graph of y = 8− x3 .

6.112. Find the distance between the point (0,2) and the parabola y = x2/2 .
6.113. What is the area of the largest rectangle that can be inscribed in the ellipse

x2

a2 +
y2

b2 = 1 , if the sides of the rectangle are parallel to the x and y -axes?
6.114. Text on a page must take up exactly 24 square centimeters. The top and

bottom margins must be equal to 2 centimeters, while the left and right margins must
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be equal to 3 centimeters. What should the dimensions of the block of text be in order
to economize paper?

6.115. Text on a page must take up exactly S square centimeters. The top and
bottom margins must be equal to a centimeters, while the left and right margins must
be equal to b centimeters. What should the dimensions of the block of text be in order
to economize paper?

6.116. A movie screen on a wall is 20 feet high and 10 feet above your eyelevel.
At what distance from the front of the room should you position yourself so that your
angle of viewing the screen is as large as possible?

6.117. An aircraft climbing at a constant angle of 30◦ above the horizontal passes
directly over a radar station at an altitude of 1 kilometer. At a later instant, the radar
shows that the aircraft is at a distance of 2 kilometers from the station and that this
distance is increasing at the rate of 7 kilometers per minute. What is the speed of the
aircraft at that instant?

6.118. The curvature of a function is defined as
∣∣∣∣∣∣∣∣∣∣∣

d2 f
dx2

[
1+
(

d f
dx

)2
]3/2

∣∣∣∣∣∣∣∣∣∣∣

.

Find the value of x for which the curvature of the function y = lnx is maximal.
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6.6 Function graphs

The relationship between the graphs of f(x)and f ′(x)

For differentiable functions, local ex-
tremes are found where the derivative
changes its sign.

For twice-differentiable functions, points
of inflection are where f ′′(x) changes
its sign. However, f ′′(x) =

(
f ′(x)

)′
,

which implies that the derivative of f ′(x)
changes its sign; thus points of inflection
of the function are found where f ′(x) has
a local extreme.

max

min

P.O.I.

�

�

�

x

y

0

y = f (x)

x

y

0

y = f ′(x)

1

Using f ′(x) and f ′′(x) to sketch the graph of f(x)

There are four possible combinations of the signs of f ′(x) and f ′′(x) . The
shape of the graph of f (x) for each combination is given in the table below.

f ′(x) + + − −

f ′′(x) + − + −

f (x)

1

1

1

1

increasing,
concave up

increasing
concave down

decreasing
concave up

decreasing
concave down

Thus, in order to correctly graph the function f (x) , it is necessary to find the
intervals on which both f ′(x) and f ′′(x) do not change their signs.

6.119. Let M1 be the number of local minimums of a twice-differentiable function,
and M2 be its number of local maximums. If M1 and M2 are finite, explain why
|M1−M2| ≤ 1 .

6.120. Explain why a twice-differentiable function that has M1 local minimums
and M2 local maximums must have not less than M1 +M2−1 points of inflection.

6.121. Explain why a twice-differentiable, non-linear function that has horizontal
asymptotes at ∞ and −∞ must have at least one point of inflection.
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6.122. Sketch the graph of a twice-differentiable, non-linear function with slant
asymptotes at ∞ and −∞ that does not have any points of inflection.

6.123. The graph of f ′ , the derivative of f , is given below. How many a) local
minimums; b) local maximums; c) points of inflection does the graph of f have?

x

y

0

1

6.124. The graphs of two functions, h′(x) and h′′(x) , are given below. a) Which
graph is which and why? b) What will h′′′(x) (the third derivative of h(x) ) look like?
Draw one possible graph. c) What will h(x) look like? Draw one possible graph.

x

y

1

6.125. Let f (x) be a function continuous on the interval [−5,5] . The first and
second derivatives of f (x) have the properties indicated in the table below. Draw a
sketch of a possible graph of f (x) . Assume f (1) = 0 .

x [−5,−4) −4 (−4,−2.5) −2.5 (−2.5,−2)

f ′(x) > 0 DNE < 0 0 < 0

f ′′(x) > 0 DNE > 0 0 < 0

x −2 (−2,−1) −1 (−1,2) 2 (2,5]

f ′(x) < 0 < 0 0 > 0 > 0 > 0

f ′′(x) 0 > 0 > 0 > 0 0 < 0

6.126. The function g(x) is defined for all x except for x = 1 and x = 7 , discon-
tinuous at x = 3 , and its range is R . Draw a sketch of a possible graph of g(x) that
satisfies the following conditions:

lim
x→−∞

g(x) =−1; lim
x→1−

g(x) = 1; lim
x→1+

g(x) = 3;

lim
x→3

g(x) =−3; lim
x→7−

g(x) =−∞; lim
x→7+

g(x) = ∞;

lim
x→∞

g(x) = 3.
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An accurate graph of a function requires a complete investigation of its properties:

1. Determine the domain of f (x) .

2. Determine whether or not the function is even, odd, or periodic.

3. Find all discontinuities and determine their type.

4. Find all asymptotes at infinity or at a point.

5. Find the first derivative of f (x) . Find the critical points and determine the
intervals on which f (x) is monotone. Use the first derivative test to find all
the coordinates of local extremes.

6. Find the second derivative of f (x) . Find the points where f ′′(x) = 0 or
f ′′(x) does not exist and determine the intervals on which f (x) is concave
up or concave down. Find the coordinates of all inflection points.

7. Find all x - and y -intercepts.

8. Sketch the graph of f (x) using all available information.

Sketch accurate graphs of the following functions.

6.127. y =
x

1+ x2 6.128. y =
x

x2−1

6.129. y =
1
x
+4x2 6.130. y =

(x−1)2

(x+1)3

6.131. y =
x3 +2x2 +7x−3

2x2 6.132. y =
x
ex

6.133. y = ln(x2 +1) 6.134. y = x+
lnx
x

6.135. y = e2x−x2
6.136. y = (x+2)e1/x

6.137. y = x−2tan−1 x 6.138. y = (x−1)2/3(x+1)3

6.139. y2 = x2− x4 6.140. y2 = (1− x2)3

6.141. y = etanx 6.142. y = x2−4|x|+3

6.143. y =
√

1− e−x2 6.144. y = ln
(

x+
√

x2 +1
)

6.145. y = cos−1
(

1− x
1−2x

)
.



Chapter 7.

INFINITE SERIES

7.1 Introduction to series

Consider the sequence a1,a2, . . . ,an, . . .

Definition. The N -th partial sum is

SN = a1 +a2 + . . .+aN =
N

∑
n=1

an,

and the numbers a1,a2, . . . are called the terms of the series.

Definition. The sum of the series is the limit

S = lim
N→∞

SN =
∞

∑
n=1

an,

assuming it exists.

Definition. If the sum of a series exists, then it is convergent; otherwise it is
divergent.

Properties of series

1. If
∞

∑
n=1

an converges, then for any number k the series
∞

∑
n=1

kan converges as

well, and
∞

∑
n=1

kan = k
∞

∑
n=1

an .

2. If
∞

∑
n=1

an and
∞

∑
n=1

bn both converge, then the series
∞

∑
n=1

(an +bn) also con-

verges, and
∞

∑
n=1

an +
∞

∑
n=1

bn =
∞

∑
n=1

(an +bn) .

3. If a series converges, then it will remain convergent if a finite number of
terms are added or deleted from the series.

Theorem (Necessary condition for the convergence of a series)

If a series is convergent, then lim
n→∞

an = 0 .
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Example 7.1. Consider the geometric progression with b1 = 2 and q = 0.5 . The
N -th partial sum is equal to

SN = b1
1−qN

1−q
= 2

1−0.5N

1−0.5
= 4

(
1−0.5N) .

This series is convergent, because

S = lim
N→∞

SN = lim
N→∞

4
(
1−0.5N)= 4.

Example 7.2. Consider the series
∞

∑
n=1

(ln(n+1)− lnn) . It is not hard to see that

S1 = a1 = ln2;
S2 = a1 +a2 = ln2+(ln3− ln2) = ln3;

S3 = a1 +a2 +a3 = ln3+(ln4− ln3) = ln4;
. . .

SN = ln(N +1)

Obviously, lim
N→∞

SN = ∞ , and the series is not convergent. This example is also

interesting in that the necessary condition is nevertheless satisfied, i.e. we have

lim
n→∞

an = lim
n→∞

(ln(n+1)− lnn) = lim
n→∞

ln
(

1+
1
n

)
= ln1 = 0.

This example therefore shows that the necessary condition for convergence is not
sufficient.

Explain why the following series are divergent.

7.1.
∞

∑
n=1

(−1)n 7.2.
∞

∑
n=1

√
n2 +1

3n2 +1

7.3.
∞

∑
n=1

n2 +1
100n2 7.4.

∞

∑
n=1

(−1)nn
n+1

7.5.
∞

∑
n=1

nsin
1
n

7.6.
∞

∑
n=1

(
1+

1
n

)n

7.2 Positive series

Definition. If a series contains only positive terms, then it is called a positive
series.

Definition. The series
∞

∑
n=1

1
n
is called the harmonic series; the series

∞

∑
n=1

1
np is

called the generalized harmonic series.
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Theorem (Criteria for the convergence of the generalized harmonic se-

ries)

The generalized harmonic series is convergent if p > 1 ; if p ≤ 1 , then it is
divergent.

Sufficient conditions for the convergence of positive series

1. The first comparison test

Consider two positive series
∞

∑
n=1

an and
∞

∑
n=1

bn , where an ≤ bn for any n .

If the series
∞

∑
n=1

bn converges, then the series
∞

∑
n=1

an must also converge; if

however
∞

∑
n=1

an diverges, then the series
∞

∑
n=1

bn diverges as well.

2. The second comparison test

Consider two positive series
∞

∑
n=1

an and
∞

∑
n=1

bn , and assume that the limit

lim
n→∞

an

bn
= k exists. If k 6= 0 , then these two series are either both converge

or both divergent.

Note that if k = 0 and
∞

∑
n=1

bn converges, then
∞

∑
n=1

an also converges; and if

k = ∞ and
∞

∑
n=1

bn diverges, then
∞

∑
n=1

an will diverge as well.

3. The ratio test

Consider the positive series
∞

∑
n=1

an and the limit lim
n→∞

an+1

an
= l . If l < 1 ,

then the series converges; if l > 1 , then the series diverges; if l = 1 , then
more investigation of the series is required.

4. The root test

Consider the positive series
∞

∑
n=1

an and the limit lim
n→∞

n
√

an = l . If l < 1 ,

then the series converges; if l > 1 , then the series diverges; if l = 1 , then
more investigation of the series is required.

Example 7.3. Determine whether or not the following series are convergent:

a)
∞

∑
n=2

1
n3/2 lnn

b)
∞

∑
n=1

n2 +1
n4 +n−1

; c)
∞

∑
n=1

n+1
n2 +3n−1

.

Solution.
a) Note that lnn > 1 for n≥ 3 , and therefore



CHAPTER 7. INFINITE SERIES 63

1
n3/2 lnn

<
1

n3/2

for all n ≥ 3 . Therefore, since the series
∞

∑
n=2

1
n3/2 converges as it is a generalized

harmonic series with p > 1 , then the series
∞

∑
n=2

1
n3/2 lnn

converges as well by the

first comparison test.

b) We will compare this series to the series
∞

∑
n=1

1
n2 . We have

lim
n→∞

an

bn
= lim

n→∞

(n2 +1)n2

n4 +n−1
= 1 6= 0 ;

therefore, since
∞

∑
n=1

1
n2 converges as a generalized harmonic series with p > 1 , the

series
∞

∑
n=1

n2 +1
n4 +n−1

is convergent by the second comparison test.

c) We will compare this series to the series
∞

∑
n=1

1
n
. We have

lim
n→∞

an

bn
= lim

n→∞

(n+1)n
n2 +3n−1

= 1 6= 0 ;

therefore, since
∞

∑
n=1

1
n
diverges, being the harmonic series, the series

∞

∑
n=1

n+1
n2 +3n−1

also diverges by the second comparison test.

Example 7.4. Determine whether or not the following series are convergent:

a)
∞

∑
n=1

n+1
n!

; b)
∞

∑
n=1

2n

n+3
; c)

∞

∑
n=1

(
n

2n+1

)n

.

Solution.
a) We will use the ratio test:

lim
n→∞

an+1

an
= lim

n→∞

(n+2)n!
(n+1)!(n+1)

= lim
n→∞

n+2
(n+1)2 = 0.

As 0 < 1 , this series is convergent.

b) We will use the ratio test:

lim
n→∞

an+1

an
= lim

n→∞

2n+1(n+3)
(n+4)2n = lim

n→∞

2(n+3)
n+4

= 2.

As 2 > 1 , this series is divergent.

c) We will use the root test:

lim
n→∞

n
√

an = lim
n→∞

n
2n+1

=
1
2
.

As 0.5 < 1 , this series is convergent.
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Determine whether or not the following series are convergent.

7.7.
∞

∑
n=1

lnn
n

7.8.
∞

∑
n=1

1
ln(n+1)

7.9.
∞

∑
n=2

1
ln(2n)

7.10.
∞

∑
n=1

ln
(

2+
2√
n

)

7.11.
∞

∑
n=1

n
2n−1

7.12.
∞

∑
n=1

n−10
100n+10

7.13.
∞

∑
n=1

2
n3 7.14.

∞

∑
n=1

n
1+n2

7.15.
∞

∑
n=1

n
(1+n)3 7.16.

∞

∑
n=1

1√
(n+1)(n+2)

7.17.
∞

∑
n=1

1√
(n+1)(n+2)(n+3)

7.18.
∞

∑
n=1

1
n+n 3

√
n

7.19.
∞

∑
n=1

1
2n

(
1+

1
n

)n2

7.20.
∞

∑
n=1

(
n+1

3n

)n

7.21.
∞

∑
n=1

1√
2n+n2

7.22.
∞

∑
n=1

2n−1
(
√

2)n

7.23.
∞

∑
n=1

n 3
√

n
4
√

n7 +3
7.24.

∞

∑
n=1

n3

4n

7.25.
∞

∑
n=1

4n

n3n 7.26.
∞

∑
n=1

1
3n√n

7.27.
∞

∑
n=1

n
(n+1)!

7.28.
∞

∑
n=1

n+2
n!4n

7.29.
∞

∑
n=1

2n

(n+5)!
7.30.

∞

∑
n=1

n5n

(2n+1)!

7.31.
∞

∑
n=1

nn

(n+1)!
7.32.

∞

∑
n=1

nn

2n(n+1)!

7.33.
∞

∑
n=1

nn

3n(n+1)!
7.34.

∞

∑
n=1

(
n

n+1

)n

7.35.
∞

∑
n=1

(
n

n+1

)n2

7.36.
∞

∑
n=1

1
lnn(n+1)

7.37.
∞

∑
n=1

tan
3+n

n2 7.38.
∞

∑
n=1

(
tan−1

(
1
n

))n

7.39.
∞

∑
n=1

sin
π

2n

7.40. Consider the divergent series
∞

∑
n=1

an and
∞

∑
n=1

bn . What can be said about the
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convergence of i)
∞

∑
n=1

(an +bn) ; ii)
∞

∑
n=1

anbn ; iii)
∞

∑
n=1

an

bn
, assuming bn 6= 0?

7.41. If
∞

∑
n=1

an converges and |bn|< |an| for all n , is it true that the series
∞

∑
n=1

bn

converges as well?

7.42. Show that if
∞

∑
n=1

an converges and an≥ 0 , then
∞

∑
n=1

(ean−1) also converges.

7.3 Alternating series

Consider the series
∞

∑
n=1

an , in which the terms an may be either positive or

negative. The first step in investigating such series is to consider the convergence

of
∞

∑
n=1
|an| .

Theorem (Sufficient condition for the convergence of a series)

If the series of absolute values
∞

∑
n=1
|an| converges, then the series

∞

∑
n=1

an con-

verges as well.

Definition. If
∞

∑
n=1
|an| converges, then the series

∞

∑
n=1

an converges absolutely.

Note that, by definition, any convergent positive series converges absolutely.

Definition. If
∞

∑
n=1
|an| does not converge, and yet the series

∞

∑
n=1

an does converge,

then it converges conditionally.

Definition. An alternating series is a series which can be written as
∞

∑
n=1

(−1)n+1an , where an > 0 , e.g.

a1−a2 +a3−a4 + ...

Theorem (Leibnitz’s theorem)

If 1) an > 0 ; 2) lim
n→∞

an = 0 ; and 3) the terms an are non-increasing, then the

alternating series
∞

∑
n=1

(−1)n+1an converges.

Theorem. If the series
∞

∑
n=1

an converges absolutely, then it will remain abso-

lutely convergent for any rearrangement of its terms, and its sum will not
change.

Theorem. If the series
∞

∑
n=1

an converges conditionally, then for any number A

it is possible to rearrange the terms of the series so that its sum equals A . It
is even possible to rearrange the terms so that the series becomes divergent!
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Example 7.5. Determine whether or not the following series converge absolutely,
conditionally, or diverge:

a)
∞

∑
n=1

(−1)n

n
√

n
; b)

∞

∑
n=2

(−1)n

lnn
; c)

∞

∑
n=1

(−1)nn
5n−2

.

Solution.

a) Consider the series of absolute values
∞

∑
n=1

1
n
√

n
. This series converges, as it

is a generalized harmonic series with p = 1.5 > 1 . Therefore, the series
∞

∑
n=1

(−1)n

n
√

n
converges absolutely.

b) Consider the series of absolute values
∞

∑
n=2

1
lnn

. Since lnn < n for n≥ 2 , then

we have
1

lnn
>

1
n
.

The harmonic series
∞

∑
n=2

1
n
diverges, and therefore the series

∞

∑
n=2

1
lnn

also diverges

by the first comparison test.

On the other hand, we have lim
n→∞

1
lnn

= 0 and, since lnx is an increasing func-

tion,
1

ln(n+1)
<

1
lnn

. Therefore, the terms of the series are non-increasing, and so

by Leibnitz’s theorem we conclude that the alternating series
∞

∑
n=2

(−1)n

lnn
converges

conditionally.

c) For this case, it is enough to note that

lim
n→∞

n
5n−2

=
1
5
.

Therefore, the terms of the series do not approach zero, and the series is divergent
by the necessary condition of convergence.

Determine whether or not the following series converge absolutely, conditionally,
or diverge.

7.43.
∞

∑
n=1

cosn
n5 7.44.

∞

∑
n=1

sinn
3n

7.45.
∞

∑
n=1

sin
1

n
√

n
7.46.

∞

∑
n=1

(−1)n+1 n+3
n+1

7.47.
∞

∑
n=1

(−1)n

2n+1
7.48.

∞

∑
n=6

(−1)n+1

n2−5n

7.49.
∞

∑
n=2

(−1)n+1

n3−1
7.50.

∞

∑
n=1

(−1)n+1 n+1
3n2

7.51.
∞

∑
n=1

(−1)n+1

n
√

n
7.52.

∞

∑
n=1

(−1)n

(n+1)4n−1
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7.53.
∞

∑
n=1

(−1)n

n!
7.54.

∞

∑
n=1

(−1)nn
n!

7.55.
∞

∑
n=1

(−1)n

2n+1
7.56.

∞

∑
n=1

(−1)n+1 nn

n!

7.57.
∞

∑
n=1

(−1)n+1 (n+1)!
(n+1)n 7.58.

∞

∑
n=1

(−1)n+1
(

n
3n−1

)n

7.59.
∞

∑
n=2

(−1)n
√

n−1
7.60.

∞

∑
n=1

(−1)n+1 n2

5n

7.61.
∞

∑
n=1

(−1)n−1 tan
1√

n(n+1)

7.62. Show that the series
∞

∑
n=1

(−1)n+1 2+(−1)n

n
is divergent. Why isn’t Leib-

nitz’s theorem applicable?

7.4 Power series

Definition. A power series is a function of the form

f (x) = a0 +a1x+a2x2 +a3x3 + . . .+anxn + . . .=
∞

∑
n=0

anxn.

The numbers a0,a1, . . . are called the coefficients of the power series.

Power series, depending on the value of x , may be either convergent or diver-
gent. However, such power series are always convergent for x = 0 .

Definition. The set of values of x for which a power series is convergent is the
convergence set.

Theorem. 1) If a power series is convergent for some value of x1 , where
x1 6= 0 , then it is absolutely convergent for any value of x such that |x|< |x1| .
2) If a power series is divergent for some value of x2 , then it is divergent

for any value of x such that |x|> |x2| .
Therefore, there is some number R such that the power series converges ab-

solutely for all |x|< R and diverges for all |x|> R .

Definition. The convergence interval of a power series is the interval (−R,R) ,
such that the power series is convergent for x ∈ (−R,R) and divergent for all
|x|> R . R is called the radius of convergence.

Note that these theorems do not determine whether or not the series converges
for x = R and x =−R . It is therefore necessary to consider the endpoints of the
convergence interval separately.

It is possible for R to equal 0 (in which case the power series is convergent
only for x = 0 ), or ∞ (in which case the power series is convergent for all x ).

Theorem. The radius of convergence can be found by using either of the fol-
lowing formulas:
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R = lim
n→∞

∣∣∣∣
an

an+1

∣∣∣∣ or R =
1

lim
n→∞

n
√
|an|

.

Properties of power series

Theorem. The function f (x) =
∞

∑
n=0

anxn is continuous on its convergence set.

Theorem. The function f (x) =
∞

∑
n=0

anxn is differentiable on its convergence set:

f ′(x) =
∞

∑
n=1

nanxn−1 ,

and the convergence interval of this series is the same as that of f (x) .

Power series are often written in a more general form—not in terms of x , but
in terms of x− x0 :

∞

∑
n=0

an(x− x0)
n.

The properties of such series are exactly the same as those considered above,
except that the convergence interval will be (x0−R,x0 +R) .

Example 7.6. Find the convergence set for the power series 1+ x+ x2 + . . .

Solution. First we will find the radius of convergence. Since an = 1 , we have

R = lim
n→∞

1
1
= 1 .

Therefore, the series converges absolutely for all |x| < 1 and diverges for all

|x|> 1 . Now check the endpoints: for x = 1 the series
∞

∑
n=0

1 is obviously divergent

because the necessary condition for convergence is not satisfied; for x = −1 the

series
∞

∑
n=0

(−1)n is divergent as well, and for the same reason.

Therefore, the series is convergent for x ∈ (−1,1) .

Example 7.7. Find the convergence set for the power series

2x− (2x)2

2
+

(2x)3

3
− . . .+(−1)n+1 (2x)n

n
+ . . .

Solution. Here we have an = (−1)n+1 2n

n
, and so

R = lim
n→∞

∣∣∣∣∣
(−1)n+1 2n

n

(−1)n+2 2n+1

n+1

∣∣∣∣∣= lim
n→∞

n+1
2n

=
1
2
.

This means that the power series will converge absolutely for all |x| < 0.5 . At
the left endpoint of the convergence interval (x = −0.5 ), the series will be written
as
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−1− 1
2
− 1

3
− . . .=−

(
1+

1
2
+

1
3
+ . . .

)
;

this is the harmonic series, and it is divergent. At the right endpoint x = 0.5 , how-
ever, the series will be written as

1− 1
2
+

1
3
− . . .+(−1)n+1 1

n
+ . . . ;

this alternating series is conditionally convergent by Leibnitz’s theorem. Therefore,
the final answer is that the power series is convergent for x ∈ (−0.5,0.5] .

Example 7.8. Find the convergence set for the power series

a)
∞

∑
n=1

xn

n!
and b)

∞

∑
n=0

(nx)n .

Solution. a) The radius of convergence of this series is

R = lim
n→∞

(n+1)!
n!

= lim
n→∞

(n+1) = ∞;

therefore, this series is absolutely convergent for all x .

b) The radius of convergence of this series is

R = lim
n→∞

nn

(n+1)n+1 = lim
n→∞

nn

(n+1)n(n+1)
=

= lim
n→∞

(
n

n+1

)n 1
n+1

= lim
n→∞

1
e(n+1)

= 0 .Therefore, this series is convergent

only for x = 0 , and divergent for all other x .

Find the convergence set for the following power series.

7.63.
∞

∑
n=0

n3xn 7.64.
∞

∑
n=0

3nxn

7.65.
∞

∑
n=1

1
n(n+3)

(x+8)n−1 7.66.
∞

∑
n=0

1
(2n−1)2n xn

7.67.
∞

∑
n=0

(−1)n

n3 +1
xn+1 7.68.

∞

∑
n=1

(−1)n+1

n
√

n
xn+1

7.69.
∞

∑
n=1

1
n2n (x+4)n 7.70.

∞

∑
n=0

(−1)n

(n2 +1)2 (x−3)n

7.71.
∞

∑
n=0

(x+1)n

(n+1)4n−1 7.72.
∞

∑
n=1

xn

2n+ 3
√

n

7.73.
∞

∑
n=1

(x−2)n
√

n(n2 +1)
7.74.

∞

∑
n=0

1
n 3
√

n+1
(x+2)n

7.75.
∞

∑
n=0

(−1)n(x−5)n

4
√

n+1
7.76.

∞

∑
n=0

n
3n+1

(x
4

)n
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7.77.
∞

∑
n=0

(−x)n√n+1
3n−1 7.78.

∞

∑
n=0

n3

(n+1)2 (x+5)n

7.79.
∞

∑
n=1

(−1)nxn+1
√

n32n+1 7.80.
∞

∑
n=0

(−4)n+1

2n−1
x2(n−1)

7.81.
∞

∑
n=1

(x+1)n

2nn(n2 +1)!
7.82.

∞

∑
n=1

(
n

n+1

)n

xn



Chapter 8.

TAYLOR AND MACLAURIN SERIES

Definition. Let f (x) be a function defined on the open interval (a,b) , and which
can be differentiated (n+1) times on (a,b) . Then the equality

f (x) = f (x0)+ f ′(x0)(x− x0)+ . . .+
f (n)(x0)

n!
(x− x0)

n +Rn+1(x),

for any values of x and x0 in (a,b) is called Taylor’s formula. Rn+1(x) is
called the remainder function. The resulting function (without Rn+1(x) ) is
called the Taylor expansion of f (x) with respect to x about the point x = x0
of order n .

One of the most common forms of the remainder function is the Lagrange
form:

Rn+1(x) =
(x− x0)

n+1

(n+1)!
f (n+1) (x0 +θ(x− x0)

)
,

where 0 < θ < 1 .

Definition. If lim
n→∞

Rn+1(x) = 0 for some x , then the infinite series

f (x) = f (x0)+
∞

∑
n=1

f (n)(x0)

n!
(x− x0)

n

is called the Taylor series for f (x) . A Maclaurin series is a Taylor series
with x0 = 0 .

Note that if f (x) is a polynomial of degree n , then it will have at most only
n non-zero derivatives; all other higher-order derivatives will be identically equal
to zero.

Example 8.1. Write the power series x4−5x3 + x2−3x+4 in terms of (x−4) .

Solution. First we will find the first 4 derivatives at x = 4 :

f ′(x) = 4x3−15x2 +2x−3; f ′(4) = 21;

f ′′(x) = 12x2−30x+2; f ′′(4) = 74;

f ′′′(x) = 24x−30; f ′′′(4) = 66;

f IV (x) = 24.

Therefore, since f (4) =−56 , the answer is
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f (x) =−56+21(x−4)+
74
2!

(x−4)2 +
66
3!

(x−4)3 +
24
4!

(x−4)4 =

=−56+21(x−4)+37(x−4)2 +11(x−4)3 +(x−4)4.

8.1. Write the power series 3x3 +2x2 + x in terms of x−1 .

8.2. Find the Taylor expansion of f (x) =
2
x
about the point x = 1 of order 3.

The following series are of extreme importance. All of them are Maclaurin
series (x0 = 0 ):

1. ex = 1+ x+
x2

2!
+

x3

3!
+ . . .+

xn

n!
+ . . .

2. sinx = x− x3

3!
+

x5

5!
− . . .+(−1)n−1 x2n−1

(2n−1)!
+ . . .

3. cosx = 1− x2

2!
+

x4

4!
− . . .+(−1)n x2n

(2n)!
+ . . .

4. If −1 < x < 1 , then

(1+x)m = 1+mx+
m(m−1)

2!
x2+. . .+

m(m−1)(m−2) . . .(m−n+1)
n!

xn+. . .

In particular,

1
1+ x

= 1− x+ x2− x3 + x4 + . . .+(−1)nxn + . . . ( |x|< 1 )

5. If −1 < x≤ 1 , then

ln(1+ x) = x− x2

2
+

x3

3
− . . .+(−1)n−1 xn

n
+ . . .

Using these formulas, it is possible to find the Taylor series for other functions
without using Taylor’s formula.

Example 8.2. Find the Taylor series for f (x) = e2x at x0 = 0 .

Solution. Denote 2x = t , and note that t→ 0 as x→ 0 . Using (1), we find

e2x = et = 1+ t +
t2

2!
+

t3

3!
+ . . .+

tn

n!
+ . . .= 1+2x+

4x2

2!
+

8x3

3!
+ . . .+

2n

n!
xn + . . .

Example 8.3. Find the Taylor series for f (x) = lnx at x0 = 1 .

Solution. lnx = ln
(
1+(x−1)

)
. Denote x−1 = t , so that t→ 0 as x→ 1 . Using

(5), we find

ln
(
1+(x−1)

)
= ln(1+ t) = t− t 2

2
+ . . .+(−1)n−1 t n

n
+ . . .=

= (x−1)− (x−1)2

2
+ . . .+(−1)n−1 (x−1)n

n
+ . . .

This series is valid for −1 < x−1≤ 1 , or for 0 < x≤ 2 .
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Example 8.4. Find the Taylor series for f (x) =
√

x3 at x = 1 .

Solution.
√

x3 = x3/2 = (1+(x−1))3/2 . Denote x−1 = t , so that t→ 0 as x→ 1 .
Using (4), we find

√
x3 = (1+ t)3/2 = 1+

3
2

t +

3
2
· 1

2
1 ·2 t2 + . . .+

3
2
· 1

2
· . . . ·

(
3
2
−n+1

)

n!
tn + . . .=

= 1+
3
2
(x−1)+

3
2
· 1

2
1 ·2 (x−1)2 + . . .+

3
2
· 1

2
· . . . ·

(
3
2
−n+1

)

n!
(x−1)n + . . .

Example 8.5. Find the Taylor series for f (x) =
1
x
at x = 3 .

Solution.
1
x
=

1
3+(x−3)

=
1

3
(

1+
x−3

3

) . Denote t =
x−3

3
, so that t → 0 as

x→ 3 . Using (4), we find

1
x
=

1
3(1+ t)

=
1
3
(
1− t + t2− t3 + . . .+(−1)nt n + . . .

)
=

=
1
3

(
1− x−3

3
+

(
x−3

3

)2

−
(

x−3
3

)3

+ . . .+(−1)n
(

x−3
3

)n

+ . . .

)
=

=
1
3
− x−3

32 +
(x−3)2

33 − . . .+(−1)n (x−3)n

3(n+1)
+ . . .

This series is valid for −1 <
x−3

3
< 1 , or 0 < x < 6 .

Example 8.6. Find the Taylor series for f (x) = sin
πx
4

at x = 2 .

Solution. sin
πx
4

= sin
(

π

2
+

π

4
(x−2)

)
= cos

(
π

4
(x−2)

)
. Denote t =

π

4
(x−2) , so

that t→ 0 as x→ 2 . Using (3), we find

sin
πx
4

= cos t = 1− t2

2!
+

t4

4!
− . . .+(−1)n t2n

(2n)!
+ . . .=

= 1− π2

42 ·2!
(x−2)2 +

π4

44 ·4!
(x−2)4− . . .+(−1)n π2n

42n · (2n)!
(x−2)2n + . . .

Example 8.7. Find the Taylor series for f (x) =





ex−1
x

, x 6= 0;

1, x = 0
at x = 0 .
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Solution.

f (x) =
1+ x+

x2

2!
+ . . .+

xn

n!
+ . . .−1

x
= 1+

x
2!

+
x2

3!
+ . . .+

xn−1

n!
+ . . .

Find the Taylor series for the following functions at the given point.

8.3. f (x) = e−x2
, x = 0. 8.4. f (x) = sin

x
2
, x = 0.

8.5. f (x) = cos2 x, x = 0. 8.6. f (x) = (x− tanx)cosx, x = 0.

8.7. f (x) = lnx, x = 10. 8.8. f (x) = (x−1) ln(x), x = 1.

8.9. f (x) =
√

1+ x2, x = 0. 8.10. f (x) = 3
√

8− x3, x = 0.

8.11. f (x) =





sinx
x

, x 6= 0;

1, x = 0,
x = 0.

8.12. f (x) =





ex3− e−x3

2x3 , x 6= 0;

1, x = 0,
x = 0.

Example 8.8. Find the first five terms (i.e., up to the term x4 ; a zero term is still a
term!) in the Maclaurin expansion of the function f (x) = sin

(
ex−1

)
.

Solution. Instead of using Taylor’s formula, we will use the expansions

ex−1 = x+
x2

2!
+

x3

3!
+

x4

4!
+ . . .

and

siny = y− 1
3!

y3 + . . .

It follows from these, by putting

y = x+
x2

2!
+

x3

3!
+

x4

4!
+ . . . ,

that

sin
(
ex−1

)
=

(
x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)
− 1

3!

(
x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)3

+ . . .

Consider separately the last expression, remembering that only terms involving x4

or lower powers of x are of interest:

(
x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)3

=

(
x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)2(
x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)
=

=

(
x2 + x3 +

7
12

x4 + . . .

)(
x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)
= x3 +

3
2

x4 + . . .
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Therefore,

sin
(
ex−1

)
=

(
x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)
− 1

3!

(
x3 +

3
2

x4 + . . .

)
+ . . .=

= x+
1
2

x2− 5
24

x4 + . . .

Note that, as always, it is possible to use Taylor’s theorem directly. This would
require finding the first four derivatives of f (x) and calculating them at x = 0 . For
the function considered in this example, using Taylor’s theorem directly might be
easier and faster; however, for more complex functions using Taylor’s theorem is
generally much more difficult and time-consuming.

Find the first five terms in the Maclaurin expansion of the following functions.

8.13. f (x) = ln(1+ ex). 8.14. f (x) = cos
(

ln(1+ x)
)

8.15. f (x) = e cosx. 8.16. f (x) = cosn x.

8.17. f (x) =− lncosx. 8.18. f (x) = (1+ x)x.

Find the first non-zero term in the Maclaurin expansion of the following functions:

8.19. x+ ln
(√

1+ x2− x
)
. 8.20. 2−2cosx− sin2 x.

8.21. ln(1+2x)e2x−2(x+ x2). 8.22. ln
(
1+ x+ x2)+ ln

(
1− x+ x2).

8.23. 1− cos(1− cosx). 8.24. etan2x−1−2x−2x2.

8.25. tan(sinx)− sin(tanx). 8.26. 2ln(2− cosx)− sin2(x).



Chapter 9.

INDEFINITE INTEGRATION

Definition. If F ′(x) = f (x) , then F(x) is an antiderivative of f (x) .

Theorem. If f (x) is continuous, then an antiderivative of f (x) exists.

Note that if F(x) is an antiderivative of f (x) , then any function F(x)+C ,
where C is a constant, is also an antiderivative; therefore, once an antiderivative
of f (x) has been found, infinitely many antiderivatives can also be found.

Theorem. If F1(x) and F2(x) are two antiderivatives of f (x) , then
F1(x)−F2(x) is a constant.

This theorem simply states that all antiderivatives of f (x) can be written in
this form F(x)+C , where F(x) is any antiderivative of f (x) .

Definition. The set of all antiderivatives of f (x) is called the indefinite integral

of f (x) :
∫

f (x)dx = F(x)+C , where F(x) is any antiderivative of f (x) and

C is an arbitrary constant.

Properties of the indefinite integral.

1.

(∫
f (x)dx

)′
= f (x) ;

2. d
(∫

f (x)dx
)
= f (x)dx ;

3.
∫

dF(x) = F(x)+C ;

4.
∫

k f (x)dx = k
∫

f (x)dx , where k is any constant;

5.
∫ (

f (x)±g(x)
)

dx =
∫

f (x)dx±
∫

g(x)dx .

Table of elementary integrals.

1.
∫

xadx =
xa+1

a+1
+C , a 6=−1 ;

2.
∫ dx

x
= ln |x|+C ;

3.
∫

sinxdx =−cosx+C ,
∫

cosxdx = sinx+C ;
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4.
∫ dx

cos2 x
= tanx+C ,

∫ dx
sin2 x

=−cotx+C ;

5.
∫

axdx =
ax

lna
+C , a > 0 , a 6= 1 ;

∫
exdx = ex +C ;

6.
∫ dx

1+ x2 = tan−1 x+C ,
∫ dx

a2 + x2 =
1
a

tan−1
(x

a

)
+C ;

7.
∫ dx

a2− x2 =
1

2a
ln
∣∣∣∣
a+ x
a− x

∣∣∣∣+C , a 6= 0 ;

8.
∫ dx√

1− x2
= sin−1 x+C ,

∫ dx√
a2− x2

= sin−1
(x

a

)
+C ;

9.
∫ dx√

x2±a2
= ln

∣∣∣x+
√

x2±a2
∣∣∣+C , a 6= 0 .

9.1 Direct integration

Example 9.1. Find the following integrals using the table of elementary integrals:

a)
∫ dx

x4 ; b)
∫

3
√

xdx ; c)
∫ dx√

x
.

Solution.

a)
∫ dx

x4 =
∫

x−4dx =
x−3

−3
+C =− 1

3x3 +C ;

b)
∫

3
√

xdx =
∫

x1/3dx =
x

1
3+1

1
3 +1

+C =
3
4

x4/3 +C ;

c)
∫ dx√

x
=
∫

x−1/2dx =
x−

1
2+1

−1
2 +1

+C = 2
√

x+C .

Example 9.2. Find the following integrals using the table of elementary integrals

a)
∫ dx

3x ; b)
∫

23x−1dx ; c)
∫ dx

9x2−1
; d)

∫ dx
4x2 +25

; e)
∫ dx√

4x2 +1
.

Solution.

a)
∫ dx

3x =
∫ (1

3

)x

dx =

(1
3

)x

ln 1
3

+C =− 1
3x ln3

+C ;

b)
∫

23x−1dx =
∫ 8x

2
dx =

1
2

8x

ln8
+C =

23x

6ln2
+C ;

c)
∫ dx

9x2−1
=

1
9

∫ dx
x2− 1

9

=
1
9

1
2
(1

3

) ln

∣∣∣∣∣
x− 1

3

x+ 1
3

∣∣∣∣∣+C =
1
6

ln
∣∣∣∣
3x−1
3x+1

∣∣∣∣+C ;
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d)
∫ dx

4x2 +25
=

1
4

∫ dx
x2 + 25

4

=
1

10
tan−1 2x

5
+C ;

e)
∫ dx√

4x2 +1
=

1
2

∫ dx√
x2 + 1

4

=
1
2

ln
∣∣∣∣x+

√
x2 + 1

4

∣∣∣∣+C .

Find the following integrals using the table of elementary integrals.

9.1.
∫

x4dx. 9.2.
∫ dx

2
√

x
.

9.3.
∫
(5x3 +6x2−3x+1)dx. 9.4.

∫
3x−0.35dx.

9.5.
∫ (x

2
+1
)3

dx. 9.6.
∫ −2dx

x2 .

9.7.
∫

5xdx. 9.8.
∫

(x2 +2)2

3
√

x
dx.

9.9.
∫ dx

2x2−3
. 9.10.

∫ (√
x+

1
3
√

x

)2

dx.

9.11.
∫ 2x+4

x
dx. 9.12.

∫ x2

x2 +4
dx.

9.13.
∫ x2− x

3x
dx. 9.14.

∫ x5− x+1
x2 +1

dx.

9.15.
∫ x2−16√

x+2
dx. 9.16.

∫
sin2

(x
2

)
dx.

9.17.
∫

cos2
(x

2

)
dx. 9.18.

∫ sin2x
cosx

dx.

9.19.
∫

tan2 xdx. 9.20.
∫

cot2 xdx.

9.21.
∫

sec2 xdx. 9.22.
∫

csc2 xdx.

9.23.
∫ 1+3x

5x dx. 9.24.
∫ (

sin−1 x+ cos−1 x
)

dx.

9.25.
∫ (

tan−1 x+ cot−1 x
)

dx.

9.2 Integration by substitution

Suppose that
∫

f (x)dx cannot be written in the form of elementary integrals. In

some cases the integral can be found by substitution. Substitution involves using some

function of the form x = x(t) in order to transform the integral
∫

f (x)dx into an
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integral of the form
∫

g(t)dt , which can be subsequently found.

Example 9.3. Find the following integrals:

a)
∫

cos(3x)dx ; b)
∫ xdx

1+ x2 ; c)
∫ √

sinxcosxdx ;

d)
∫

tanxdx ; e)
∫
(2x3 +1)4x2dx .

Solution.
a) Let t = 3x , then dt = 3dx and dx = 1

3dt . Therefore,

∫
cos(3x)dx =

∫
cos t

dt
3

=
1
3

sin t +C =
1
3

sin(3x)+C.

b) Let t = 1+ x2 , then dt = 2xdx and xdx = 1
2dt . Therefore,

∫ xdx
1+ x2 =

1
2

∫ dt
t
=

1
2

ln |t|+C =
1
2

ln(1+ x2)+C.

c) Let t = sinx , then dt = cosxdx . Therefore,
∫ √

sinxcosxdx =
∫ √

tdt =
2
3

t3/2 +C =
2
3
(sinx)3/2 +C.

d) Rewrite tanx as sinx
cosx . Let t = cosx , then dt =−sinxdx and sinxdx =−dt .

Therefore,
∫

tanxdx =
∫ sinx

cosx
dx =−

∫ dt
t
=− ln |t|+C =− ln |cosx|+C.

e) Let t = 2x3 +1 , then dt = 6x2dx and x2dx = 1
6dt . Therefore,

∫
(2x3 +1)4x2dx =

1
6

∫
t4dt =

1
6

t5

5
+C =

(2x3 +1)5

30
+C.

Find the following integrals by substitution.

9.26.
∫ e1−√xdx√

x
. 9.27.

∫ xdx√
2x+1

.

9.28.
∫
(2x+1)ex2+xdx. 9.29.

∫
(2x+3)dx

x2 +3x+10
.

9.30.
∫

(3x2−2x−5)dx
x3− x2−5x+7

. 9.31.
∫ x3dx√

x−1
.

9.32.
∫ xdx

2x+3
. 9.33.

∫ 4x+3
(x−2)2 dx.

9.34.
∫

cos2 xsin3 xdx. 9.35.
∫

sec2 xdx.

9.36.
∫

2cosx sinxdx. 9.37.
∫ dx

16−9x2 .
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9.38.
∫ dx

x
√

x+1
. 9.39.

∫ xdx
sin2(x2−1)

.

9.40.
∫ dx√

tanxcos2 x
. 9.41.

∫ 3− tanx
cos2 x

dx.

9.42.
∫ dx√

1− x2(sin−1 x)3
. 9.43.

∫ exdx
e2x +4

.

9.44.
∫ x3dx√

1− x8
. 9.45.

∫ x3dx√
9− x2

.

9.46.
∫

(2x−4)dx
x2−4x+10

. 9.47.
∫ sin

(1
x +5

)

x2 dx.

9.48.
∫ dx

x ln6 x
. 9.49.

∫
sin(4x)cos4(2x)dx.

9.50.
∫

x ·35x2+4dx. 9.51.
∫ dx√

(1−25x2)cos−1 5x
.

9.52.
∫

(tan−1 x)2

1+ x2 dx. 9.53.
∫ 3x−1

x2 +9
dx.

9.54.
∫ x+1

x
√

x−2
dx. 9.55.

∫ 2x−
√

sin−1 x√
1− x2

dx.

9.56.
∫ 3tanxdx

cos2 x
. 9.57.

∫ dx√
x+ 3
√

x
.

9.58.
∫ √xdx√

x+2
. 9.59.

∫ √xdx
4
√

x+1
.

9.3 Integration by parts

Consider the functions u(x) and v(x) . Integration of the equality
d(uv) = udv+ vdu gives

∫
d(uv) =

∫
udv+

∫
vdu,

so ∫
udv = uv−

∫
vdu.

This formula (integration by parts) reduces finding
∫

udv to finding
∫

vdu ,

which may be simpler to find.

Example 9.4. Find
∫ x2

(1+ x2)2 dx .

Solution.
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∫ x2

(1+ x2)2 dx =

:
:

:
:

:
:

u = x, du = dx

dv =
xdx

(1+ x2)2 , v =− 1
2(1+ x2)

:
:

:
:

:
:

=

=− x
2(1+ x2)

+
1
2

∫ dx
1+ x2 =− x

2(1+ x2)
+

1
2

tan−1 x+C.

While integration by parts is a general method that can be used to find integrals,
three major cases are generally of interest:

I. Integrals of the type
∫∫∫

xn sinaxdx ,
∫∫∫

xn cosaxdx ,
∫∫∫

xneaxdx .

In this case, choose u(x) = xn and integrate by parts. It will be necessary to use
integration by parts n times.

Example 9.5. Find
∫

xcos(2x)dx .

Solution.
∫

xcos(2x)dx =

:
:

:
:

:

u = x, du = dx

dv = cos(2x)dx, v =
1
2

sin(2x)

:
:

:
:

:

=

=
x
2

sin(2x)− 1
2

∫
sin(2x)dx =

x
2

sin(2x)+
1
4

cos(2x)+C.

II. Integrals containing logarithmic or inverse trigonometric functions.

In this case, choose u(x) to be the logarithmic or inverse trigonometric function.

Example 9.6. Find the following integrals:

a)
∫ lnx

x2 dx ; b)
∫

tan−1 xdx .

Solution.

a)
∫ lnx

x2 dx =

:
:

:
:

:
:

u = lnx, du =
dx
x

dv =
dx
x2 , v =−1

x

:
:

:
:

:
:

=− lnx
x

+
∫ dx

x2 =− lnx
x
− 1

x
+C.

b)
∫

tan−1 xdx =

:
:

:
:

:
:

u = tan−1 x, du =
dx

1+ x2

dv = dx, v = x

:
:

:
:

:
:

=

= x tan−1 x−
∫ xdx

1+ x2 = x tan−1 x− 1
2

ln(1+ x2)+C.

III. Integrals of the type
∫∫∫

eaxsinbxdx and
∫∫∫

eaxcosbxdx .

In this case, it is necessary to integrate twice by parts, each time choosing u(x) to
be either the exponential or trigonometric function.
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Example 9.7. Find
∫

e2x sinxdx .

Solution.

∫
e2x sinxdx =

:
:

:
:

:

u = sinx, du = cosxdx

dv = e2xdx, v =
1
2

e2x

:
:

:
:

:

=
1
2

e2x sinx− 1
2

∫
e2x cosxdx =

=

:
:

:
:

:

u = cosx, du =−sinxdx

dv = e2xdx, v =
1
2

e2x

:
:

:
:

:

=
1
2

e2x sinx− 1
2

(
1
2

e2x cosx+
1
2

∫
e2x sinxdx

)
=

=
1
2

e2x sinx− 1
4

e2x cosx− 1
4

∫
e2x sinxdx.

Moving
1
4

∫
e2x sinxdx to the left side of the equation, we have

5
4

∫
e2x sinxdx =

1
2

e2x sinx− 1
4

e2x cosx+C,

so ∫
e2x sinxdx =

e2x

5
(2sinx− cosx)+C.

Find the following integrals using integration by parts.

9.60.
∫

xsinxdx. 9.61.
∫

x2 cosxdx.

9.62.
∫

x2 sin(2x)dx. 9.63.
∫

xe−xdx.

9.64.
∫

x2exdx. 9.65.
∫

x2e−3xdx.

9.66.
∫ xdx

sin2 x
. 9.67.

∫ lnx
x3 dx.

9.68.
∫

lnxdx. 9.69.
∫

cos−1 3xdx.

9.70.
∫ √

1− x2dx. 9.71.
∫ √

x2 +4dx.

9.72.
∫

x2 ln(2x)dx. 9.73.
∫
(x+1) ln(x+1)dx.

9.74.
∫ dx

(x2 +4)2 . 9.75.
∫

x
√

1− x4dx.

9.76.
∫
(x2− x)3−xdx. 9.77.

∫ (
tan−1 x− cot−1 x

)
dx.
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9.78.
∫

ln(x2 + x+1)dx. 9.79.
∫

tan−1(x2)dx.

9.4 Integration of rational functions

Definition. A rational function is a function of the form f (x) =
P(x)
Q(x)

, where

P(x) and Q(x) are polynomials.

Definition. A proper rational function is a rational function in which the degree
of P(x) is strictly less than the degree of Q(x) .

Improper rational functions (i.e. those in which the degree of P(x) is greater
than or equal to the degree of Q(x) ) can always be rewritten as the sum of a
polynomial and a proper rational function. Therefore, the problem of integrating
of rational functions is really the problem of integrating proper rational functions.

The integrals of proper rational functions are found by partial fraction ex-
pansion of the integrand into simple fractions.

There are 4 types of simple fractions:

1. Fractions of the type
A

x−a
.

The integrals of such fractions are easily found:
∫ Adx

x−a
= A ln |x−a|+C.

2. Fractions of the type
A

(x−a)n , where n is a whole number greater than 1.

These fractions are also easily integrated:
∫ Adx

(x−a)n = A
∫
(x−a)−ndx = A

(x−a)1−n

1−n
+C =

A
(1−n)(x−a)n−1 +C.

3. Fractions of the type
Ax+B

x2 + px+q
, where p2−4q < 0 .

The integrals of such fractions are found by completing the square in the
denominator and subsequent substitution. An example of finding the integral
of a fraction of this type will be given in Example 9.8.

4. Fractions of the type
Ax+B

(x2 + px+q)n , where p2−4q < 0 and n is a whole

number greater than 1.

Integration of this type of fraction will not be considered in this course.
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Example 9.8. Find a)
∫ 3dx

2x+4
; b)

∫ 3dx
(2x+4)3 ; c)

∫ 3x+2
x2 +2x+2

dx .

Solution.

a)
∫ 3dx

2x+4
=

3
2

∫ dx
x+2

=
3
2

ln |x+2|+C.

b)
∫ 3dx

(2x+4)3 =
3
8

∫ dx
(x+2)3 =− 3

16(x+2)2 +C.

c) First it is necessary to complete the square in the denominator:
∫ 3x+2

x2 +2x+2
dx =

∫ 3x+2
(x+1)2 +1

dx.

Let t = x+1 , so we will have
∫ 3x+2

(x+1)2 +1
dx =

∫ 3(t−1)+2
t2 +1

dt =
∫ 3tdt

t2 +1
−
∫ dt

t2 +1
.

We will use another substitution, u = t2+1 , to find the first integral; the second
can be found immediately:

∫ 3tdt
t2 +1

=
3
2

∫ du
u

=
3
2

ln |u|+C =
3
2

ln(t2 +1)+C;
∫ dt

t2 +1
= tan−1 t +C.

Therefore, we find
∫ 3x+2

(x+1)2 +1
dx =

3
2

ln(t2 +1)− tan−1 t +C =

=
3
2

ln(x2 +2x+2)− tan−1(x+1)+C.

Expansion of proper rational functions in partial fractions is achieved by first
factoring the denominator and then writing the type of partial fraction (with un-
known coefficients in the numerator) that corresponds to each term in the denom-
inator:

1. if the denominator contains (x−a) , then the partial fraction expansion will

contain
A

x−a
;

2. if the denominator contains (x−a)2 , then the partial fraction expansion will

contain
A

(x−a)2 +
B

x−a
;

3. if the denominator contains (x−a)n , then the partial fraction expansion will

contain
A

(x−a)n +
B

(x−a)n−1 + . . .+
Z

(x−a)
;

4. if the denominator contains (x2 + px+ q) , where p2− 4q < 0 , then the

partial fraction expansion will contain
Ax+B

x2 + px+q
.
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The unknown coefficients (A , B , etc.) are then found by one of two ways:
by inserting concrete values of x , or by using the method of undetermined coef-
ficients.

Example 9.9. Find
∫ dx

x2−4x+3
.

Solution. The denominator of this rational function can factored and rewritten as
x2−4x+3 = (x−1)(x−3). The expansion in partial fractions will have the form

1
(x−1)(x−3)

=
A

x−1
+

B
x−3

.

We want this transformation to be identical, i.e. the values of the left and right
sides of this expression should be the same for all x . If we bring the terms in the
right side to a common denominator, we will find

1
(x−1)(x−3)

=
A(x−3)+B(x−1)

(x−1)(x−3)
.

This can be identically true only if A(x−3)+B(x−1) = 1 for all x . In particular,
if x = 3 , then we find B = 1/2 ; and if x = 1 , then we find A =−1/2 . Therefore,

1
(x−1)(x−3)

=−1
2

1
x−1

+
1
2

1
x−3

.

The validity of this equality can be checked by simplifying.
Alternatively, we could use the method of undetermined coefficients to

find A and B . According to this method, we can rewrite the condition
A(x−3)+B(x−1) = 1 as

(A+B)x+(−3A−B) = 1.

The method of undetermined coefficients consists of equating the coefficients for
various powers of x on the left and right sides of this equation. The coefficient of
x on the left is (A+B) , while on the right it is 0 ; therefore A+B = 0 . Equating
the free terms on the left and right sides gives −3A−B = 1 . Solving these two
equations, we find A =−1/2 and B = 1/2 , as before.

It is now possible to find the integral:

∫ dx
x2−4x+3

=−1
2

∫ dx
x−1

+
1
2

∫ dx
x−3

=−1
2

ln |x−1|+ 1
2

ln |x−3|+C,

which can also be written more concisely as

∫ dx
x2−4x+3

=
1
2

ln
∣∣∣∣
x−3
x−1

∣∣∣∣+C.
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Example 9.10. Find

a)
∫ 4x+5

x2−4x+3
dx ; b)

∫ x2 +1
(x−1)(x−2)(x−3)

dx ; c)
∫ xdx

(x+1)2(x+2)
.

Solution.

a) First it is necessary to factor the denominator: x2− 4x+ 3 = (x− 1)(x− 3) .
The next step is to rewrite the integrand in partial fractions:

4x+5
(x−1)(x−3)

=
A

x−1
+

B
x−3

=
A(x−3)+B(x−1)

(x−1)(x−3)
.

Therefore, we have A(x− 3) + B(x− 1) = 4x + 5 for all x . For x = 3 we find
B = 17/2 , while for x = 1 we find A =−9/2 . Therefore,

4x+5
(x−1)(x−3)

=
−9/2
x−1

+
17/2
x−3

.

It is now possible to find the integral:
∫ 4x+5

x2−4x+3
dx =−9

2

∫ dx
x−1

+
17
2

∫ dx
x−3

=−9
2

ln |x−1|+ 17
2

ln |x−3|+C.

b) Again, it is first necessary to rewrite the integrand in partial fractions:

x2 +1
(x−1)(x−2)(x−3)

=
A

x−1
+

B
x−2

+
C

x−3
=

A(x−2)(x−3)+B(x−1)(x−3)+C(x−1)(x−2)
(x−1)(x−2)(x−3)

.

We must find the constants A , B and C such that the numerators of the first and
last fractions are the same. For x = 1 we find 2A = 2 and therefore A = 1 ; for
x = 2 we find −B = 5 and therefore B = −5 ; finally, for x = 3 we find 2C = 10
and therefore C = 5 :

x2 +1
(x−1)(x−2)(x−3)

=
1

x−1
− 5

x−2
+

5
x−3

.

The integral is therefore equal to
∫ x2 +1

(x−1)(x−2)(x−3)
dx = ln |x−1|−5ln |x−2|+5ln |x−3|+C.

c) The integrand can be rewritten in partial fractions as follows:

x
(x+1)2(x+2)

=
A

(x+1)2 +
B

x+1
+

C
x+2

=
A(x+2)+B(x+1)(x+2)+C(x+1)2

(x+1)2(x+2)
.

We demand that A(x+2)+B(x+1)(x+2)+C(x+1)2 = x for all x . In particular,
for x =−2 we find C =−2 ; for x =−1 we find A =−1 . We can use other value
of x for determining B ; for instance for x = 0 we have 2A+ 2B+C = 0 , and
therefore B = 2 . Therefore,

x
(x+1)2(x+2)

=
−1

(x+1)2 +
2

x+1
+
−2

x+2
.
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This equality can be checked by simplification. The initial integral is now easy to
find:

∫ xdx
(x+1)2(x+2)

=−
∫ dx

(x+1)2 +2
∫ dx

x+1
−2

∫ dx
x+2

=

=
1

x+1
+2ln |x+1|−2ln |x+2|+C =

1
x+1

+2ln
∣∣∣∣
x+1
x+2

∣∣∣∣+C .

Example 9.11. Find
∫ x2 +10x−10

x(x2 +2x+2)
dx.

Solution. The denominator of the integrand of this integral contains a quadratic
polynomial with a negative discriminant. Therefore, the integrand will have the
following representation in partial fractions:

x2 +10x−10
x(x2 +2x+2)

=
A
x
+

Bx+C
x2 +2x+2

.

After finding the common denominator on the right side of this equation, we will
come to the condition

x2 +10x−10 = A(x2 +2x+2)+(Bx+C)x

for all x . Using the method of undetermined coefficients, this condition can be
rewritten as

(A+B)x2 +(2A+C)x+2A = x2 +10x−10,

leading to the system of equations




A+B = 1;
2A+C = 10;
2A =−10.

The solution is A =−5 , B = 6 , C = 20 . Therefore,

x2 +10x+10
x(x2 +2x+2)

=−5
x
+

6x+20
x2 +2x+2

.

The integral of the first item is
∫ 5dx

x
= 5ln |x|+C;

the second is
∫

(6x+20)dx
x2 +2x+2

=
∫

(6x+20)dx
(x+1)2 +1

=

:
:

:
:

t = x+1
dx = dt

:
:

:
:

=
∫

(6t +14)dt
t2 +1

=

= 3
∫ d(t2 +1)

t2 +1
+14

∫ dt
t2 +1

=

= 3ln(t2 +1)+14tan−1 t +C = 3ln(x2 +2x+2)+14tan−1(x+1)+C.

Therefore, the final answer is
∫ x2 +10x−10

x(x2 +2x+2)
dx =−5ln |x|+3ln(x2 +2x+2)+14tan−1(x+1)+C.
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In order to integrate an improper rational function, it is first necessary to
reduce the integrand to the sum of a polynomial and a proper rational function by
long division.

Example 9.12. Find
∫ x3 + x2 +3x+4

x2 + x−6
dx .

Solution. The first thing that should be noticed in this example is that the integrand
is not a proper rational function (the degree of the numerator is greater than the
degree of the denominator). Therefore, it is first necessary to reduce the integrand
by long division; we will find

x3 + x2 +3x+4
x2 + x−6

= x+
9x+4

x2 + x−6
.

Therefore, we now have

∫ x3 + x2 +3x+4
x2 + x−6

dx =
1
2

x2 +
∫ 9x+4

x2 + x−6
dx.

All that is left is to find the last integral, which we do by simplifying the integrand:

9x+4
x2 + x−6

=
9x+4

(x+3)(x−2)
=

A
x+3

+
B

x−2
.

Equating the numerators we find A(x− 2)+B(x+ 3) = 9x+ 4 for all x ; inserting
x = 2 gives B = 22/5 , and inserting x =−3 gives A = 23/5 . Therefore,

∫ x3 + x2 +3x+4
x2 + x−6

dx =
1
2

x2 +
23
5

∫ dx
x+3

+
22
5

∫ dx
x−2

=

=
1
2

x2 +
23
5

ln |x+3|+ 22
5

ln |x−2|+C.

Find the following integrals:

9.80.
∫ dx

x2−9x+20
9.81.

∫ 2x+5
x2−9x+20

dx

9.82.
∫ x2− x+1

x2−9x+20
dx 9.83.

∫ x3dx
x2−9x+20

9.84.
∫ 3x3 +11x2 + x+3

x+3
dx 9.85.

∫ 12x2 +3
2x2 + x−1

dx

9.86.
∫ 3x+10

(x−1)(x+2)(x+4)
dx 9.87.

∫ 3x−2
(x+3)2 dx

9.88.
∫ x−1

x+2
dx 9.89.

∫ dx
(x−1)2(x+1)

9.90.
∫ dx

(x+2)2(x+3)2 9.91.
∫ x2 +10x+24

(x−2)2(x+1)
dx
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9.92.
∫ x+2

x−1
dx 9.93.

∫ 2xdx
(x2 +1)(x−1)

9.94.
∫ 3dx

x2 +2x+5
9.95.

∫ x2 +4
(x2 +2x+2)(x+2)

dx

9.96.
∫ x+15

(x2 +4)(x2 +9)
dx 9.97.

∫ 4x2 +2
(x2 +1)(x+1)2 dx



Chapter 10.

INTRODUCTION TO DIFFERENTIAL EQUATIONS

10.1 Basic concepts

Definition. A first-order differential equation is an equation that establish-
es a relationship between the independent variable x , the unknown function
y = f (x) and its first derivative y ′ :

F(x,y,y ′) = 0.

Such differential equations are called ordinary because the unknown function
y = f (x) is a function of only one variable.

Definition. The function y(x) is a solution of a differential equation if it satisfies
the equation for any value of x .

Definition. The graph of the solution of a differential equation is an integral
curve.

Example 10.1. Consider the differential equation

y ′ = 2y.

One of the solutions to this differential equation is, for example, y = 3e2x ; indeed,

y ′ =
(
3e2x)′ = 6e2x = 2

(
3e2x)= 2y.

Note that there are infinitely many solutions to this differential equation; it can be
shown that all of these solutions have the form y = Ce2x , where C is an arbitrary
constant.

10.1. Verify that the function y = 5e4x + e3x is a solution to the differential equa-
tion y′−4y =−e3x .

10.2. Verify that the function y = tanx is a solution to the differential equation
y′− y2 = 1 .

10.3. Verify that the function y = ex−e−x is a solution to the differential equation
(y′)2 = 4+ y2 .

10.4. Verify that the function y = x7 is a solution to the differential equation
x2y′′ = 6xy′ .

10.5. The differential equation x2y′′+ 35y = 11xy′ admits a solution of the form
y = xa , where a 6= 0 . What are the possible values of a?
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Definition. An initial condition is an additional equation that gives the value of
the unknown function y = f (x) at some point:

y(x)
∣∣
x=x0

= y0, or y(x0) = y0.

Definition. The general solution of a differential equation is a function of the
form y = g(x,C) that satisfies two conditions:

1) g(x,C) is a solution to the differential equation for any value of C ;
2) for any given initial value condition y(x0) = y0 it is possible to find

a particular value of the arbitrary constant C0 such that the function
g(x,C0) satisfies the initial condition, i.e. g(x0,C0) = y0 .

Example 10.2. In Example 10.1 the general solution is y =Ce2x .

Definition. An initial value problem is a system consisting of a differential
equation and an initial condition.

Definition. The particular or definite solution of a differential equation is the
one solution that satisfies a given initial condition.

Theorem (Existence and uniqueness of the solution to an initial value

problem)

Consider the differential equation y′ = f (x,y) . If the function f (x,y) and its

derivative
∂ f
∂y

is continuous in some region D on the coordinate plane that

contains the point (x0,y0) , then there exists exactly one solution y(x) that
satisfies both the differential equation and the initial condition y(x0) = y0 .

The notation ∂ f
∂y is called the partial derivative of f (x,y) with respect to y . It can

be found by simply differentiating f (x,y) with respect to y and considering x to be a
fixed constant. For instance, if f (x,y) = x2y3 , then ∂ f

∂y = 3x2y2 .

Example 10.3. Consider the initial value problem
{

y ′ = 2y,
y(0) = 5

As it was noted in Example 10.1, all functions of the type y =Ce2x are solutions to
the differential equation. It is not hard to see that the function

y = 5e2x

is the particular solution to the given initial value problem, as it is of the form
y =Ce2x and y(0) = 5e2·0 = 5 .
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10.2 Slope fields

More often than not, it is not possible to find the general solution to a dif-
ferential equation. However, we would still like to determine the properties of
the solution of a differential equation, e.g., zeroes, extremes or inflection points,
asymptotes at infinity, etc. The existence or non-existence of such properties is
generally referred to as the behavior of the solution.

The behavior of the solution of a initial value problem may differ, depending
on the initial condition. In these cases it is of special interest to have a way to
investigate this dependence.

In order to visualize the behavior of the solution for different initial conditions,
even when the general solution to the differential equation cannot be found, it is
very convenient to use slope fields.

The differential equation
dy
dx

= f (x,y)

gives the derivative of the solution for any given values of x and y . According
to its geometric interpretation, the derivative equals the slope of the tangent line;
therefore, this value gives an idea about what the graph of the solution looks
like in the neighborhood of any given point. By calculating the value of dy/dx
at many points and drawing segments of the tangent line at each of them, it is
possible then to get an idea of what the graph of the solution looks like in general.
A diagram depicting these tangent line segments is called a slope field.

Example 10.4. Consider the differential equation
dy
dx

= 2x . It should be obvious

that the general solution to this differential equation is y = x2 +C . The slope field
of this differential equation is given below:

x

y

This slope field gives an idea of the behavior of the solution to the differential
equation for any initial condition. For instance, it can be seen that any solution to
this differential equation will have a minimum at x = 0 , and that lim

x→±∞
y(x) = ∞ .
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For better understanding, we will draw the graph of a solution to this differential
equation and superimpose it on the slope field:

x

y

Often it is important to determine how the initial condition affects the behavior of
the solution.

Example 10.5. The slope field of a certain differential equation is shown below.
Determine what the value of lim

x→∞
y(x) will be, depending on the value of y0 in the

initial condition y(0) = y0 .

x

y

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

−0.2
−0.4
−0.6

Solution. First, note that y(x) does not change in either of three cases: y = 0 ,
y = 0.6 and y = 1.4 . If y < 0 , however, the solution will be a decreasing function,
and in this case lim

x→∞
y(x) = −∞ . If 0 < y < 1.4 , then lim

x→∞
y(x) = 0.6 . Finally, if

y > 1.4 we will have lim
x→∞

y(x) = ∞ . Therefore, the final answer is

lim
x→∞

y(x) =





−∞, y0 < 0;
0, y0 = 0;
0.6, 0 < y0 < 1.4;
1.4, y0 = 1.4;
∞, y0 > 1.4.
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In this last example, the values y = 0 , y = 0.6 and y = 1.4 are called steady states,
steady solutions, rest points or simply equilibriums, because y does not change as
x→ ∞ for these values. However, it can be seen that the behavior of y(x) in the
vicinity of these steady states is different. In particular, if y(x) is close to 0 , but not
equal to it, then lim

x→∞
y(x) will not equal zero—it will equal −∞ or 0.6 , depending on

its sign. The situation at y = 1.4 is analogous: if y is close to 1.4 , but not equal to
it, then again lim

x→∞
y(x) will equal either 0.6 or ∞ . However, the behavior of y(x) in

the vicinity of 0.6 is different: if y(x) is close to 0.6 , then lim
x→∞

y(x) = 0.6 . For this
reason, we say that the values y = 0 and y = 1.4 are unstable steady states, while
y = 0.6 is a stable steady state.

10.6. Given the initial condition y(0) = y0 , for what values of y0 will the solution
to the differential equation with the slope field show below have a global maximum?

x

y

0

0.5

1.0

1.5

2.0

2.5

−0.5

−1.0

−1.5

−2.0

−2.5

10.7. Sketch a slope field for the differential equation
dy
dx

= x+y at the 25 points

indicated below.

x

y

1 2−1−2

1

2

−1

−2�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

10.8. Consider the slope field given below. Do the solutions to the differential
equation that produced this slope field have inflection points? What is the limit of
these solutions as x→ ∞ and x→−∞?



CHAPTER 10. INTRODUCTION TO DIFFERENTIAL EQUATIONS 95

x

y

10.9. The slope field of some differential equation with the initial condition
y(0) = y0 is given below. a) For what values of y0 will the solution have a min-
imum? b) For what values of y0 will the solution have a maximum? c) For what
values of y0 will the solution be stable? d) What is lim

x→∞
y(x)?

x

y

0.5

1.0

1.5

2.0

2.5

3.0

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

10.3 Separable differential equations

Definition. A separable differential equation is an equation of the form

y′ = f (x)g(y).

Separable differential equations are special in that the variables can be sepa-
rated—that means that they can be rewritten so that all terms involving y are on
one side of the equation, and all terms involving x are on the other.

The first derivative dy/dx is considered to consist of two expressions—dx
and dy , and these expressions are also separated. This means that the differentials
dx and dy should be located in different sides of the equation.
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Example 10.6. The differential equation
dy
dx

= x is separable and therefore it can

be solved by separating the variables:

dy = xdx ⇒
∫

dy =
∫

xdx ⇒ y =
x2

2
+C ,

where C is an arbitrary constant.

It is important to make sure that all operations conducted during separation of
variables do not change the possible values of x or y .

Example 10.7. Find the general solutions of the following differential equations:

a)
dy
dx

=−y
x
; b) (1+ x)ydx+(1− y)xdy = 0 ; c)

√
y2 +1dx = xydy .

Solution.
a) Separating the variables,

dy
y

=−dx
x

⇒
∫ dy

y
=−

∫ dx
x

⇒ ln |y|=− ln |x|+C1.

Note that here we assume y 6= 0 . It is necessary to check if y = 0 is a solution,
since otherwise it may be lost. Assuming y = 0 , we have y ′ = 0 and the differential
equation is satisfied. Therefore, y = 0 is a solution to the differential equation.

It is not necessary to check whether or not x = 0 is a solution, because the right
side of the initial differential equation is not defined for x = 0 .

Rewriting the arbitrary constant C1 as ln |C2| , so that C2 6= 0 :

ln |y|= ln
∣∣∣∣
C2

x

∣∣∣∣ ⇒ y =±C2

x
.

Finally, putting C = ±C2 and remembering that y = 0 is a solution, we find

y =
C
x
, where C is any constant, including zero.

b) Separating the variables,

y−1
y

dy =
1+ x

x
dx ⇒

∫ (
1− 1

y

)
dy =

∫ (1
x
+1
)

dx ⇒

⇒ y− ln |y|= ln |x|+ x+C ⇒ y− x− ln |xy|=C.

Therefore, the solution to this differential equation is an implicit function.
It is necessary to check whether any solutions were lost when we divided the

differential equation by y and x . Inspection shows that y = 0 is a solution; while
x = 0 satisfies the differential equation, we are interested in solutions that express
y in terms of x and therefore x = 0 will not be considered to be a solution. The
solution y = 0 cannot be found from the general solution y−x− ln |xy|=C for any
value of C , and therefore the general solution is only y− x− ln |xy|=C .

c) Separating the variables,

dx
x

=
y√

y2 +1
dy ⇒

∫ dx
x

=
∫ y√

y2 +1
dy ⇒ ln |x|=

√
y2 +1+C1.

It was necessary to divide by x . Returning to the initial differential equation, it
is easy to see that x = 0 satisfies the equation, but as in b) it will not be considered
a solution.
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Continuing,

|x|= eC1+
√

y2+1 =C2e
√

y2+1, C2 > 0;

x =±C2e
√

y2+1 =C3e
√

y2+1, C3 6= 0 .

Therefore, the final answer is x =Ce
√

y2+1 , where C is an arbitrary constant.
It is of course possible to find y explicitly as a function of x in this case, but it

is not absolutely necessary.

Find the solutions of the following differential equations.

10.10.
dy
dx

= x 10.11. x2dx = 3y2dy

10.12. x2dy = y3dx 10.13. 2
√

xdy =
dx√

y

10.14.
dy√

x
=

3dx
y

10.15. (1+2y)dx = (1+ x2)dy

10.16. xcos2 ydx = (1+ x2)dy 10.17. y2dx+(2x+4)dy = 0

10.18. (x3 + yx3)dy = (xy2− x2y2)dx 10.19. x2dy− (2xy+3y)dx = 0

10.20. (1+ x2)dy−√ydx = 0 10.21.
√

1− x2y ′ = x
√

1− y2

Example 10.8. Find the particular solutions of the following initial value problems:

a)
dy
dx

= 4y , y(2) = e10 ; b) y ′ =
1+ y2

1+ x2 , y(0) = 1

Solution.
a) It is first necessary to find the general solution. Separating the variables,

dy
y

= 4dx ⇒
∫ dy

y
=
∫

4dx ⇒ ln |y|= 4x+C1.

Note that y = 0 is a solution to the initial differential equation.

|y|= eC1+4x =C2e4x, C2 > 0;

y =±C2e4x =C3e4x, C3 6= 0.

Recalling that y = 0 satisfies the differential equation, the general solution can
be written as y =Ce4x , where C is arbitrary.

The initial condition gives e10 =Ce8 , so C = e2 ; the final answer is y = e2+4x .

b) Separating the variables,

dy
1+ y2 =

dx
1+ x2 ⇒

∫ dy
1+ y2 =

∫ dx
1+ x2 ⇒ tan−1 y = tan−1 x+C.

Note that it is easiest to find C from the initial condition at this point:
π

4
= 0+C ,

so C =
π

4
; the final answer is y = tan

(
tan−1 x+

π

4

)
.
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Find the particular solutions of the following initial value problems.

10.22.
dy
dx
− y

x
= 0, y(2) = 4 10.23. ydy− xdx = 0, y(−1) = 3

10.24.
dy
dx

=−2y, y|x=2 = e 10.25. yy ′ =
1−2x

y
, y(−2) = 1

10.26. xy ′ = 2+ x2, y|x=1 = 3 10.27. 2
√

xdy = ydx, y(4) = 1

10.28.
dy
dx

= 2
√

y lnx, y(e) = 1 10.29. (1 + e2x)y ′ = (1 + y2)ex,
y|x=0 = 0

10.30. y ′ sinx = y lny, y
(

π

2

)
= e 10.31. sin2 xdy = cos2 ydx, y(3) =

π

2

10.32. sinycosxdy = cosysinxdx, y(0) =
π

4

10.33. The diameter of a circle is decreasing at a rate equal to the area of the circle
at any given moment. Find the diameter D of the circle as a function of time t if D
was equal to 1 cm at time t = 0 .

10.34. An object starts from the point M(4,0) and moves along the x -axis so that
its velocity is equal to v = 2t +3t2 for any t ≥ 0 . Find the position of the object for
any value of t .

10.35. The population of a bacteria colony doubles every 2 days. Find the popu-
lation of the colony after 5 days of growth if the initial population was 2000.

10.36. A bacterial culture grows at a rate proportional to the number of bacteria
present. If the size of the culture triples every 9 hours, how long does it take for the
culture to double?

10.37. The weight of a puppy in the first 3 months of life doubles every 20 days.
If the weight of a newborn puppy is 200 grams, how old is a puppy that weighs
300 grams? How much will a puppy weigh 70 days after birth?

10.38. Elasticity is defined as ε = dQ
dP

P
Q , where P is price and Q is demand. Find

the demand function Q = f (P) if a) ε =−1 and Q(5) = 200 ; b) ε = −5P+2P2

Q and
Q(10) = 500 .

10.39. Radium decays at a rate proportionate to its amount. The half-life of radium
(i.e., the time needed for half of the radium to decay) is 1600 years. Determine what
percent of the radium will decay after 100 years.

10.40. The remains of an ancient campfire are unearthed and it is found that there
is only 80% as much radioactive carbon-14 in the charcoal samples from the campfire
as there is in modern living trees. If the half-life of carbon-14 is 5730 years, how long
ago did the campfire burn?

10.41. The population P(t) of wolves in a national park is increasing at a rate
proportionate to 800−P(t) , where t is measured in years and the constant of pro-
portionality is k . In how many years will the population of wolves reach 700 if
P(0) = 300 and P(5) = 400?

10.42. During a zero-order chemical reaction, the concentration of a substance
decreases at a constant rate. If two thirds of the substance reacts within the first hour,
how long will it take for the concentration of the substance to decrease to 10% of its
initial value?
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10.43. During a first-order chemical reaction, the concentration of a substance
decreases at a rate proportionate to itself. If two thirds of the substance reacts within
the first hour, how long will it take for the concentration of the substance to decrease
to 10% of its initial value?

10.44. During some catalytic chemical reactions, the concentration of a substance
decreases at a rate proportionate to itself raised to the power of 1.5 . If two thirds of
the substance reacts within the first hour, how long will it take for the concentration
of the substance to decrease to 10% of its initial value?

10.45. During a second-order chemical reaction, the concentration of a substance
decreases at a rate proportionate to its square. If two thirds of the substance reacts
within the first hour, how long will it take for the concentration of the substance to
decrease to 10% of its initial value?

10.46. During a third-order chemical reaction, the concentration of a substance
decreases at a rate proportionate to its cube. If two thirds of the substance reacts
within the first hour, how long will it take for the concentration of the substance to
decrease to 10% of its initial value?

10.47. When sugar is dissolved in water, it dissolves at a rate proportionate to
the amount of undissolved sugar present. After 1 minute, 75% of an initial portion of
sugar is still in the form of crystals. How long does it take for 75% of an initial portion
of sugar to dissolve? After 150 seconds there are 10 grams of undissolved sugar left.
How much sugar was there initially?

10.48. A 25 year old man is given $50,000 which is invested at 5% per year,
compounded continuously. He intends to deposit money continuously at the rate of
$2,000 per year. Assuming that the interest rate remains at 5%, the amount of money
A(t) at time t satisfies the equation A′ = 0.05A+2000 . a) Determine the amount of
money in the account when the man is 65. b) At age 65, he will stop depositing money
and start withdrawing money continuously at the rate of W dollars per year. If the
money must last until the man is 85, what is the largest possible value of W ?

10.4 Homogeneous differential equations

Definition. A homogeneous differential equation is one that can be written in
the form

y′ = F
(y

x

)
.

In other words, the right side depends not so much on y and x , as it depends
on the ratio of y and x .

An equivalent definition of homogeneous differential equations are that, given
y′ = F(x,y) , we have F(tx, ty) = F(x,y) for any t .

Homogeneous differential equations can be solved by substitution, introducing
a new unknown function u(x) and putting y(x) = xu(x) .

Example 10.9. Solve the equation x2y′ = xy+ y2 .

Solution. First, we rewrite the equation as

y′ =
y
x
+
(y

x

)2
.
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Since the right side of the equation can be considered to depend only on the ratio
y
x

(rather than on x and y separately), this equation is homogeneous.
The substitution y = xu(x) implies y′ = u+ xu′ ; thus the differential equation

becomes
u+ xu′ = u+u2,

or simply xu′ = u2 . The equation is now separable; using the method given in
section 10.3, we find u = 1

C−ln |x| , so the final answer is

y =
x

C− ln |x| .

Example 10.10. Solve the differential equation y′ = 5y−2x
y+2x .

Solution. Since this is a homogeneous differential equation, put y = xu(x) ; we will
find

xu′+u =
5u−2
u+2

,

or simply

u′ =−1
x
· u

2−3u+2
u+2

.

This is a separable differential equation. After separating the variables and integrat-
ing (we will need to integrate a rational function, see section 9.4), we will find three
possible solutions for u :

a) −4ln |u−2|+3ln |u−1|= ln |x|+C ;

b) u = 1 ;

c) u = 2 .

In terms of y , the solutions are

a) −4ln |y−2x|+3ln |y− x|=C ;

b) y = x ;

c) y = 2x .

Find the solutions of the following homogeneous differential equations:

10.49. xy′ = x+ y 10.50. y′ = 5+2 y
x

10.51.
(
x2− y2)dx+ xydy = 0 10.52. y′ = x2+y2

2x2

10.53. 2(x+2y)dx+(y− x)dy = 0 10.54. y′ = xy
x2+y2

10.55. (x+ y)dy+(x− y)dx = 0 10.56.
(

y−
√

x2−4y2
)

dx− xdy = 0
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10.5 Linear differential equations

Definition. A linear differential equation is an equation of the form

y′+ f (x)y = g(x).

If g(x) is identically equal to zero, then the equation is separable.
Linear differential equations can be solved by any of several equivalent meth-

ods. We will discuss two of them.

Example 10.11. Solve the equation y′+ xy = x .

Solution.
Method 1.

Suppose y(x) = u(x)v(x) (any function can be written as the product of two
other functions). We have y′ = u′v+ v′u , therefore u′v+ v′u+ xuv = x , or

u′v+(v′+ xv)u = x.

We can choose the function v almost any way we wish; the function u will then
have to be chosen as to make y satisfy the differential equation. If we choose
v′+ xv = 0 , then we have v =Ce−x2/2 ; we choose C = 1 , so that now

v = e−x2/2.

The differential equation can now be written as

e−x2/2u′ = x,

which can be solved by separation of variables; the answer is u = ex2/2 +C . Thus,
the final answer is

y = uv =
(

ex2/2 +C
)

e−x2/2 =Ce−x2/2 +1.

Method 2
Consider first the homogeneous equation y′ + xy = 0 . This equation is sep-

arable; the solution is y = Ce−x2/2 . In order to find the solution to the differ-
ential equation, we will attempt to find it in the form y = C(x)e−x2/2 . We have
y′ =C′(x)e−x2/2− xC(x)e−x2/2 , so

C′(x)e−x2/2− xC(x)e−x2/2 + xC(x)e−x2/2 = x.

Therefore, C′(x) = xex2/2 and C(x) = ex2/2 +C . The final answer is

y =
(

ex2/2 +C
)

e−x2/2 = 1+Ce−x2/2.
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Find the solutions of the following linear differential equations:

10.57. y′+ xy = x 10.58. y′+ y
x = x

10.59. y′+ 2
x y = 5x2−3 10.60. y′+2y = ex

10.61. xy′+2y = x2− x+1 10.62. 2xy′− y = x+1

10.63. 2y′− y = 4sin3x 10.64. y′+(tanx)y = cos2 x

10.65. y′ = 2x
1+x2 y+ 2

1+x2 10.66. (cos2 x)(sinx)y′=−(cos3 x)y+1

10.67. (cosx)y′+(sinx)y= 2cos3 xsinx−1



Chapter 11.

THE DEFINITE INTEGRAL

11.1 Riemann sums and the definite integral

Consider a continuous function f (x) on the interval [a,b] .

1. Divide the interval [a,b] into n subintervals. (Note that these subintervals
are not necessarily equal.) Denote the left endpoint of the i -th subinterval
by xi−1 , and the right endpoint by xi . The length of the i -th subinterval is
therefore equal to 4xi = xi− xi−1 .

| | | | | | | x

a = x0 b = xn
x1 x2 x3 xn−1xn−2. . .

2. Choose in an arbitrary manner a number ξi in each interval.

| | | | | | | x

a = x0 b = xn
x1 x2 x3 xn−1xn−2. . .

� � � � �

ξ1 ξ2 ξ3 ξnξn−1

3. Calculate the value of f (ξi)4xi for all subintervals, the product of f (ξi)
and the length of the corresponding subinterval.

4. Find the sum of all f (ξi)4xi , which we will write as
n

∑
i=1

f (ξi)4xi . This

expression is called a Riemann sum, or an integral sum.

Consider now a process in which the number of divisions increases without
bound (n→ ∞ ), and in which the maximum subinterval length decreases to zero
(max4xi→ 0 ). If the limit of the Riemann sum in this process does not depend
on how the numbers ξi where chosen on each subinterval, or how [a,b] was
divided into subintervals, then this limit is called the definite integral of f (x) on
the interval [a,b] and denoted

b∫

a

f (x)dx = lim
n→ ∞

max4xi→ 0

n

∑
i=1

f (ξi)4xi.

Theorem. If f (x) is continuous on [a,b] , then
b∫

a

f (x)dx exists.
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The geometric interpretation of the definite integral is that if f (x) ≥ 0 for

all x ∈ [a,b] , then
b∫

a

f (x)dx equals the area of the region bounded by the graph

of y = f (x) , the x -axis, and the vertical lines x = a and x = b .

If f (x) ≤ 0 for all x ∈ [a,b] , then −
b∫

a

f (x)dx equals the area of the region

bounded by the graph of y = f (x) , the x -axis, and the vertical lines x = a and
x = b .

Example 11.1. Find the value of

1∫

0

(x+1)dx using the definition.

First of all, divide the interval [0,1] into n equal subintervals. This means that
the length of each subinterval will equal 4x = 1/n .

Next, choose the points ξi so that they coincide with the right endpoint of each
subinterval: ξi = i/n . We will have

f (ξi) = ξi +1 =
i
n
+1.

Now construct the Riemann sum and find its limit as n→∞ . Since all subinter-
vals were chosen to be equal in length, the condition max4xi→ 0 will be satisfied
automatically.

1∫

0

(x+1)dx = lim
n→∞

n

∑
i=1

(
i
n
+1
)

1
n
.

The sum can be simplified:

n

∑
i=1

(
i
n
+1
)

1
n
=

1
n2

n

∑
i=1

i+
1
n

n

∑
i=1

1 =
n(n+1)

2n2 +1.

Here we used the formula for the sum of an arithmetic progression. Now find the
limit:

1∫

0

(x+1)dx = lim
n→∞

(
n(n+1)

2n2 +1
)
=

1
2
+1 =

3
2
.

11.1. The expression

1
25

(√
1

25
+

√
2

25
+ . . .+

√
25
25

)

is an approximation for what integral?
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Find the following integrals using the definition.

11.2.

3∫

1

xdx 11.3.

3∫

−2

(x−2)dx

11.4.

b∫

a

dx
x2 . 11.5.

1∫

0

exdx

11.6.

2∫

1

dx
x

11.7.

π/2∫

0

sinxdx.

Approximate calculation of definite integrals

The approximate value of an integral can be found by calculating the value of
the Riemann sum for a fixed number of subintervals. This requires choosing:

1. How the interval [a,b] was divided into subintervals;

2. How the numbers ξi were chosen on each subinterval.

Usually the method for dividing [a,b] into subintervals is given. There are
several standard ways of choosing ξi :

• Leftpoint sums: ξi is chosen to be the left endpoint of each interval.

• Rightpoint sums: ξi is chosen to be the right endpoint of each interval.

• Midpoint sums: ξi is chosen to be the midpoint of each interval.

• Inscribed rectangles: ξi is chosen so that f (ξi) is the minimal value of
f (x) on the i -th subinterval.

• Circumscribed rectangles: ξi is chosen so that f (ξi) is the maximal value
of f (x) on the i -th subinterval.

A better approximation to

b∫

a

f (x)dx can be found using one of the following

methods:

Trapezoidal approximation

Trapezoids can be used instead of using rect-
angles to increase the accuracy of approximat-
ing the value of a definite integral. Instead of
building a rectangle on each subdivision, it is
possible to build trapezoids. The area (assum-
ing that f (x) > 0 ) of each trapezoid is equal
to f (xi+1)+ f (xi)

2 (xi+1− xi) .
x

y

a bxi xi+1. . . . . .
| || |

y = f (x)

1
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Therefore, we have

b∫

a

f (x)dx≈ f (a)+ f (x1)

2
(x1−a)+

f (x1)+ f (x2)

2
(x2− x1)+ . . .+

+
f (xn−1)+ f (b)

2
(b− xn−1).

If the length of all the subdivisions are equal, i.e.
x1 − a = x2 − x1 = . . . = b− xn−1 = 4x , then this expression can be sim-
plified:

b∫

a

f (x)dx≈
(

f (a)
2

+ f (x1)+ f (x2)+ . . .+ f (xn−1)+
f (b)

2

)
4x.

Simpson’s rule

It is possible to increase the accuracy of approximation by using parabolas
rather than rectangles or trapezoids. In this case it is absolutely necessary that the
subintervals be equal, and that there is an even number of them. For instance, if
there are two subintervals, then

b∫

a

f (x)dx≈ h
3
( f (a)+4 f (x1)+ f (b)) ,

where x1 = a+b
2 and h is the length of each subinterval (h = b−a

2 ). This ap-
proximation is known as Simpson’s rule with three ordinates (or with two
divisions).

If there are four subintervals, then

b∫

a

f (x)dx≈ h
3
( f (a)+4 f (x1)+2 f (x2)+4 f (x3)+ f (b)) ,

where x1 , x2 and x3 divide the interval [a,b] into four equal subintervals and h
is the length of each subinterval; this formula is known as Simpson’s rule with
five ordinates (or with four divisions).

Simpson’s rule can be extended to any even number of equal subintervals.

Example 11.2. Find the approximate value of

4∫

−2

(3x− 2x2 + 25)dx using 3 equal

subintervals and a) left sums; b) right sums; c) midpoint sums; d) inscribed rectan-
gles; e) circumscribed rectangles.

Solution. The 3 subintervals are [−2,0] , [0,2] and [2,4] ; the length of each subin-
terval is 2.
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a)

4∫

−2

(3x−2x2 +25)dx≈

≈
(

f (−2)+ f (0)+ f (2)
)

2 =

= (11+25+23)2 = 118 .

figure 14

−2 2 40
x

y

13

b)

4∫

−2

(3x−2x2 +25)dx≈

≈
(

f (0)+ f (2)+ f (4)
)

2 =

= (25+23+5)2 = 106 .

figure 15

−2 2 40
x

y

14

c)

4∫

−2

(3x−2x2 +25)dx≈

≈
(

f (−1)+ f (1)+ f (3)
)

2 =

= (20+26+16)2 = 124 .

figure 16

−2 2 40
x

y

1 3−1

15

d)

4∫

−2

(3x−2x2 +25)dx≈

≈
(

f (−2)+ f (2)+ f (4)
)

2 =

= (11+23+5)2 = 78 .

figure 9

−2 2 40
x

y

9

e) Note that the maximum value of f (x)
on the interval [0,2] is attained at
x = 3/4 .

4∫

−2

(3x−2x2 +25)dx≈

≈
(

f (0)+ f (.75)+ f (2)
)

2 =

= (25+26.125+23)2 = 148.25 .

figure 10

−2 2 40
x

.75

y

10

Example 11.3. Find the approximate value of

4∫

−2

(3x−2x2+25)dx using the trape-

zoidal rule for 3 equal subintervals.

Solution. The 3 subintervals are [−2,0] , [0,2] and [2,4] ; the length of each subin-
terval is 2.
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4∫

−2

(3x−2x2 +25)dx≈

≈
(

f (−2)
2

+ f (0)+ f (2)+
f (4)

2

)
2 =

=
(
5.5+25+23+2.5

)
2 = 112.

figure 17

−2 2 40
x

y

16

Note that the result for the trapezoidal rule is the arithmetic mean of the left sum
approximation and the right sum approximation found in the previous example.

Example 11.4. Find the approximate value of

4∫

−2

(4x4− 30x2)dx using Simpson’s

rule with a) 4 divisions and b) 6 divisions.

Solution. a) Dividing the interval [−2,4] into 4 equal subdivisions can be achieved
by putting a = −2 , x1 = −0.5 , x2 = 1 , x3 = 2.5 and b = 4 ; the length of each
subinterval is 1.5 . The approximate value of the integral is

4∫

−2

(4x4−30x2)dx≈ 1.5
3
(

f (−2)+4 f (−0.5)+2 f (1)+4 f (2.5)+ f (4)
)
=

=
1
2
(−56−29−52−125+544) = 141.

b) Dividing the interval [−2,4] into 6 equal subdivisions will require a subdi-
vision length of 1 , and we will have a = −2 , x1 = −1 , x2 = 0 , x3 = 1 , x4 = 2 ,
x5 = 3 and b = 4 . The approximate value of the integral using this method will be

4∫

−2

(4x4−30x2)dx≈ 1
3
(

f (−2)+4 f (−1)+2 f (0)+4 f (1)+2 f (2)+4 f (3)+ f (4)
)
=

=
1
3
(
−56−104+0−104−112+216+544

)
= 128.

Note that the accuracy increases with the number of subintervals; the actual
value of the integral is 124.8 .

11.8. Find the approximate area between the curve f (x) = x3− x+1 and the x -
axis on the interval [0,2] using 4 intervals of equal length and a) left sums; b) right
sums; c) midpoint sums.

11.9. Find the approximate area between the curve f (x) = x3− x+1 and the x -
axis on the interval [0,2] using 4 intervals of equal length and the trapezoidal rule.

11.10. Knowing that

1/2∫

0

dx√
1− x2

=
π

6
, find the approximate value of π using 4

equal subintervals and the trapezoidal rule.
11.11. Find the approximate area between the curve f (x) =

√
3+ cosx and the

x -axis on the interval [0,π] using 6 intervals of equal length and a) left sums; b) right
sums; c) midpoint sums; d) the trapezoidal rule.
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11.12. A table of values for a continuous function f (x) is given below. Find the

trapezoidal approximation of
2∫
0

f (x)dx using four equal subintervals.

x 0 0.5 1.0 1.5 2.0
f (x) 3 3 5 8 13

11.13. A 100-foot pond’s width was measured at 10-foot intervals. The results are
given in the table below. Find the approximate surface area of the pond using the
trapezoidal rule.

No. 1 2 3 4 5 6 7 8 9 10 11
Width, ft 0 195 191 174 106 97 121 138 147 141 0

11.2 Calculation of definite integrals

Properties of the definite integral

1.

b∫

a

k f (x)dx = k
b∫

a

f (x)dx , where k is a constant;

2.

b∫

a

(
f (x)+g(x)

)
dx =

b∫

a

f (x)dx+
b∫

a

g(x)dx ;

3.

b∫

a

f (x)dx =
c∫

a

f (x)dx+
b∫

c

f (x)dx ;

4.

b∫

a

f (x)dx =−
a∫

b

f (x)dx ;

5. If f (x)≤ g(x) for all x ∈ [a,b] , then
b∫

a

f (x)dx≤
b∫

a

g(x)dx .

Theorem (Mean value theorem for integrals)

If f (x) is continuous, then there exists c ∈ [a,b] such that

f (c) =
1

b−a

b∫

a

f (x)dx.

f (c) is called the average or mean value of f (x) over the interval [a,b] .
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Theorem (Variable upper bound)

The derivative of the function given by F(x) =
x∫

a

f (t)dt is

F ′(x) = f (x).

Theorem (The fundamental theorem of calculus)

If f (x) is continuous on the interval [a,b] and F(x) is an antiderivative of
f (x) , then

b∫

a

f (x)dx = F(b)−F(a).

Example 11.5. Find a)

1/
√

e∫

1/e

dx
x
; b)

4∫

0

(
3x− ex/4

)
dx .

Solution.

a)

1/
√

e∫

1/e

dx
x

= ln |x|
∣∣∣∣∣

1/
√

e

1/e

= ln
(

1√
e

)
− ln

(
1
e

)
=−1

2
+1 =

1
2
.

b)

4∫

0

(
3x− ex/4

)
dx = 3

x2

2

∣∣∣∣∣

4

0

−4ex/4

∣∣∣∣∣

4

0

= 3(8−0)−4(e−1) = 28−4e.

Substitution can also be used to calculate definite integrals, and the technique
(i.e. choosing what substitution to make) is the same as for indefinite integrals.
It is of paramount importance to remember that the limits of the integral must be
changed as well. The formula for substitution in a definite integral is:

b∫

a

f (x)dx =

β∫

α

f (φ(t))φ
′(t)dt,

where x = φ(t) is a continuously differentiable function defined on [α,β ] and
φ(α) = a , φ(β ) = b .

Examples of using substitution to find definite integrals is shown in the exam-
ples below.

Example 11.6. Find a)

6∫

−1

dx√
3x+7

; b)

99∫

15

dx
3−
√

x+1
.
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Solution.

a)

6∫

−1

dx√
3x+7

=

:
:

:
:

:
:

t = 3x+7 ⇒ dx = 1
3dt;

x =−1 ⇒ t = 4;
x = 6 ⇒ t = 25

:
:

:
:

:
:

=
1
3

25∫

4

dt√
t
=

=
2
3
√

t

∣∣∣∣∣

25

4

=
2
3
(5−2) = 2.

b)

99∫

15

dx
3−
√

x+1
=

:
:

:
:

:
:

t2 = x+1 ⇒ dx = 2tdt;
x = 15 ⇒ t = 4;
x = 99 ⇒ t = 10

:
:

:
:

:
:

=

10∫

4

2t
3− t

dt =

=−2
10∫

4

t−3+3
t−3

dt =−2
10∫

4

(
1+

3
t−3

)
dt =−2t

∣∣∣∣∣

10

4

−6ln |t−3|
∣∣∣∣∣

10

4

=

=−2(10−4)−6(ln7−0) =−12−6ln7.

Definite integrals can also be integrated by parts, using the formula

b∫

a

udv = uv

∣∣∣∣∣

b

a

−
b∫

a

vdu.

Integration by parts is used for finding definite integral in the same way as for
finding indefinite integrals.

Example 11.7. Find

5∫

0

xexdx .

Solution.
5∫

0

xexdx =

:
:

:
:

u = x, du = dx
dv = exdx, v = ex

:
:

:
:

= xex

∣∣∣∣∣

5

0

−
5∫

0

exdx = 5e5−0− ex

∣∣∣∣∣

5

0

=

= 5e5− e5 +1 = 4e5 +1.

Find the following definite integrals by substitution and by integration by parts.

11.14.

3∫

2

3x2dx. 11.15.

1∫

0

(2+ ex/2)dx.

11.16.

3∫

0

dx
x2−16

. 11.17.

1∫

0

xdx
4+ x2 .

11.18.

−2∫

−3

dx
(4+3x)3 . 11.19.

1∫

0

√
2+ xdx.
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11.20.

4∫

0

3
√

4x+8dx. 11.21.

2/π∫

1/π

cos(1
x +

π

4 )

x2 dx.

11.22.

1/2∫

0

dx√
1− x2

. 11.23.

1/2∫

0

xdx√
1− x2

.

11.24.

1/2∫

0

x2dx√
1− x2

. 11.25.

1/2∫

0

x3dx√
1− x2

.

11.26.

1/2∫

0

x4dx√
1− x2

. 11.27.

2∫

0

x5
√

1+ x3dx.

11.28.

1∫

0

e2x(e2x +1)3dx. 11.29.

8∫

3

dx
1+
√

x+1
.

11.30.

2∫

−2

dx√
x2 +2x+2

. 11.31.

2∫

1

xdx√
2x+1

.

11.32.

π/4∫

0

cos2
(

x+
π

4

)
dx. 11.33.

π/3∫

π/6

cos4xcos5xdx.

11.34.

2∫

1

xdx
64− x4 . 11.35.

π∫

0

xsinxdx.

11.36.

√
3∫

0

tan−1 xdx. 11.37.

0∫

−π/2

ex/π cosxdx.

11.38.

4∫

2

x ln2xdx. 11.39.

1/
√

2∫

1/2

√
1− x2dx.

11.40.

π/6∫

π/12

xdx
cos2(2x)

. 11.41.

1∫

0

dx√
x+ 3
√

x
.

11.42.

√
3/2∫

1/2

sin−1 xdx. 11.43.

0∫

−2

ex +3
ex +4

dx.

11.44.

1∫

−5/3

√
x+2

x+3
dx.

11.45. (Simpson’s rule) Prove that the integral of

f (x) = c2x2 + c1x+ c0,

over the interval [a,b] is equal to

A =
b−a

6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
.
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11.46. Let f (x) be a continuous function that is defined for all real numbers x
and that has the following properties:

3∫

1

f (x)dx =
5
2

;
5∫

1

f (x)dx = 10.

a) Find the average (mean) value of f (x) over the closed interval [1,3] . b) Find the

value of

5∫

3

(2 f (x)+6)dx . c) Given that f (x) = ax+b , find a and b .

Calculate the following limits using definite integrals.

11.47. lim
n→∞

1√
n3

n

∑
k=1

√
n+ k. 11.48. lim

n→∞

n

∑
k=1

k
n2 + k2 .

11.49.
π

3
lim
n→∞

1
n2

n

∑
k=1

k cos
(

πk2

3n2

)
. 11.50. 3 lim

n→∞

√
3
n

n

∑
k=1

√
k

3k+n
.

11.51. lim
n→∞

n
√
(n+1)(n+2) · . . . · (2n−1)(2n)

n
.

11.52. Determine whether or not the integral

2∫

−2

x1111xdx is positive or negative.

Justify your answer.
11.53. Prove that

b∫

a

∣∣ f (x)
∣∣dx≥

∣∣∣∣∣∣

b∫

a

f (x)dx

∣∣∣∣∣∣
.

Find the following limits:

11.54. lim
x→0

1
x

x∫

0

dt√
1+ t4

. 11.55. lim
x→0

1
x

2/x∫

1/x

dt
t2 .

11.56. lim
x→1

x∫

1

sin t
t

dt

x∫

1

et

t
dt

. 11.57. lim
x→0

x∫

0

t sin(sin t)dt

x∫

0

ln2(1+ t)dt

.
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11.3 Area of regions on the coordinate plane

The area of regions on the coordinate plane can be found using two approach-
es.

1) Let y = f (x) be the function that defines the top boundary of the region,
and y = g(x) be the function that defines the bottom boundary ( f (x)≥ g(x) ).
Then the area of the region located between f (x) and g(x) from x = a to x = b
is given by

figure 7

0
x

y

a b

A

g(x)

f (x)

7

A =

b∫

a

(
f (x)−g(x)

)
dx.

2) Let x = φ(y) be the function that defines the right boundary of the region,
and let x = ψ(y) be the function that defines the left boundary (φ(y)≥ ψ(y) ).
Then the area of the region located between ψ(y) and φ(y) from y = c to y = d
is given by

x

y

c

d

0

A

x=ψ(y) x=φ(y)

A =

d∫

c

(
φ(y)−ψ(y)

)
dy.

Example 11.8. Find the area of the region bounded by the curves y =
√

x and
y = x2 .

Solution. The points of intersection are the solutions of the equation
√

x = x2 or
x = x4 , so the points of intersection are x1 = 0 and x2 = 1 . The area of the region
can be found:
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figure 4

√
x

x2

0
x

y

1

1

4

by the first method:

A =

1∫

0

(√
x− x2)dx =

2
3

x3/2

∣∣∣∣∣

1

0

− x3

3

∣∣∣∣∣

1

0

=
2
3
− 1

3
=

1
3
.

by the second method:

A =

1∫

0

(√
y− y2)dy =

2
3

y3/2

∣∣∣∣∣

1

0

− y3

3

∣∣∣∣∣

1

0

=
2
3
− 1

3
=

1
3
.

Example 11.9. Find the area of the region bounded by the curves y = 1− x2 and
y = x2 +2 and by the lines x = 0 and x = 1 .

Solution. The second method in this case is obviously much more difficult. Using
the first method gives

figure 6

0
x

y

1

2

1

x2 +2

1− x2

6

A =

1∫

0

(
(x2 +2)− (1− x2)

)
dx = 2

x3

3

∣∣∣∣∣

1

0

+ x

∣∣∣∣∣

1

0

=
2
3
+1 =

5
3
.

Example 11.10. Find the area of the region bounded by the curves y2 = 2x+1 and
x− y−1 = 0 .

Solution. The curve y2 = 2x + 1 consists of two curves: y =
√

2x+1 and
y =−

√
2x+1 , while the second curve can be written as y = x−1 . Points of inter-

section:
√

2x+1 = x−1 ⇒ x2−4x = 0, x−1≥ 0 ⇒ x = 4;

−
√

2x+1 = x−1 ⇒ x2−4x = 0, x−1≤ 0 ⇒ x = 0.

figure 5

0

−1
x

y

−0.5

4

3

−
√

2x+1

√
2x+1

x−1

5

The area of the region can be found:
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by the first method:

A =

0∫

−1/2

(√
2x+1− (−

√
2x+1)

)
dx+

4∫

0

(√
2x+1− (x−1)

)
dx =

= 2
1
3
(2x+1)3/2

∣∣∣∣∣

0

−1/2

+
1
3
(2x+1)3/2

∣∣∣∣∣

4

0

− x2

2

∣∣∣∣∣

4

0

+ x

∣∣∣∣∣

4

0

=

=
2
3
−0+

1
3
(27−1)− 1

2
(16−0)+4−0 =

16
3
.

by the second method:

A =

3∫

−1

(
(y+1)− y2−1

2

)
dy =

y2

2

∣∣∣∣∣

3

−1

+
3
2

y

∣∣∣∣∣

3

−1

− 1
6

y3

∣∣∣∣∣

3

−1

=

=
1
2
(9−1)+

3
2
(3− (−1))− 1

6
(27+1) = 4+6− 14

3
=

16
3
.

Find the area of the region bounded by the given curves.

11.58. y = x2 +1; x =−1;
x = 2; the x-axis.

11.59. x−2y+4 = 0;
x+ y−5 = 0; y = 0.

11.60. y = x2; y =−2;
x = 2; x = 4.

11.61. y = ex + e−x; x = 0;
x = 3; the x-axis.

11.62. y =−x2−1; y = 0;
x =−2; x = 1.

11.63. y2 = 4x; x = 1;
x = 9.

11.64. 3y = x2; y = x. 11.65. y = x3; y =
1
x
;

y = 0; x = 4.

11.66. xy = 1; xy = 2;
x = 1; x = 3.

11.67. y =
12

1+ x2 ; y = x2.

11.68. y = sinx; y =
2x
π
. 11.69. y = 2x2; y = x2 +4.

11.70. y =
x√

1− x2
; the

x-axis; x =−
√

2/2;
x =
√

2/2.

11.71. x = y2; y = x−6.

11.72. y = lnx; y = lnx2;
x = 5.

11.73. y = ex; y = e−x;
x = 1.

11.74. y = sin−1 x;
y = cos−1 x; the x-axis.

11.75. y = tanx; the x-axis;
x = π/4.

11.76. y = tanx; y =
√

3;
the y-axis.

11.77. y = x lnx; x =
1
e
;

x = e; the x-axis.
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11.78. Let T be the region bounded by the graph of the function y = sinx , the
lines x = π

6 and x = 2π

3 , and the x -axis.
a) Find the area of T .
b) Let x = k be the line that divides the region T into two parts with equal areas.

Find the value of k .

11.4 Volume: Solids of revolution

The volume of a solid of revolution can be found using one of two methods:
the disc and washer method and the shell method.

The disc and washer methods

When using this method, it is necessary to integrate along the axis of revolu-
tion. If the region is revolved about a horizontal line, integrate by x , and if the
region is revolved about a vertical line, integrate by y .

The process of integration "divides"the region into a series of rectangles which
are then revolved about the axis. This rotation will produce either a disc (if one
of the sides of the rectangle lies on the axis) or a washer. Thus, the disc method is
used if the axis of revolution is part of the boundary of the region, and the washer
method is used if the axis of revolution is not part of the boundary of the region.

The disc method

Let R be the radius of the disc, where the radius is the distance from the outer
edge of the disc to the axis of revolution, as shown below:

y = A�
x

y = f (x)R

a b
R = f (x)−A

1

y = A�
x

y = f (x)
R

a b
R = A− f (x)

1

y

�
x = A

c

d

x = φ(y)

R
R = φ(y)−A

1

y

�
x = A

c

d

x = φ(y)

R
R = A−φ(y)

1

The volume is V = π

b∫

a

R2dx if integrating by x , and V = π

d∫

c

R2dy if integrating

by y .
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The washer method

Let R and r be the outer and inner radius of the washer, respectively. The
inner radius is the distance from the axis of revolution to the edge of the region
closest to the axis of revolution, and the outer radius is the distance from the axis
of revolution to the edge of the region furthest from the axis or revolution, as
shown below:

y = A�
x

y = f (x)

y = g(x)R r

a b
R = f (x)−A, r = g(x)−A

1

y = A�
x

y = f (x)

y = g(x)R r

a b
R = A− f (x), r = A−g(x)

1

y

�
x = A

c

d

x = φ(y)x = ψ(y)

R

r r = ψ(y)−A

R = φ(y)−A

1

y

�
x = A

c

d

x = φ(y)
x = ψ(y)

R

r r = A−φ(y)

R = A−ψ(y)

1

The volume is V = π

b∫

a

(
R2− r2)dx if integrating by x , and

V = π

d∫

c

(
R2− r2)dy if integrating by y .

Example 11.11. Use the disc or washer method to find the volume of the solid
generated when the region bounded by the lines y = 0 , x = 1 and y = x is revolved
about a) the x -axis; b) the line y =−1 ; c) the line y = 3 .

Solution. In all three cases the region is revolved about a horizontal line, and there-
fore when finding the volume of the solid using the disc or washer method it is
necessary to integrate by x . In this case the range of x covered by the region is
[0,1] , and so integration should be done over this interval. All that is left is to
determine the radius R for each case.

a)

x

y

0 R

1

y = x

�

1

The axis of rotation is part of the boundary of the
region, so the disk method should be used. R is the
distance between the line y = x and the line y = 0 ,
so R = x−0 = x . The volume is

V = π

1∫

0

x2dx = π
x3

3

∣∣∣∣
1

0
=

π

3
.
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b)

x

y

0

r R
1

y = x

�−1

1

In this case the axis of rotation is not part of the
boundary of the region, so the washer method should
be used. The outer radius R is the distance between
the axis of rotation (y = −1 ) and the boundary of
the region that is furthest from the axis, y = x ;
R = x− (−1) = x+1 . The inner radius r is the dis-
tance between the axis of rotation (y =−1 ) and the
boundary of the region that is closest to the axis,
y = 0 . Therefore, r = 0− (−1) = 1 . The volume is

V = π

1∫

0

(
(x+1)2−12)dx = π

1∫

0

(
x2 +2x

)
dx = = π

(
x3

3
+ x2

)∣∣∣∣
1

0
=

4π

3
.

c)

x

y

0

r R

3

1

y = x
�

1

As in b), the washer method should be used. The out-
er radius R is the distance between y = 3 and y = 0 ,
so R = 3−0 = 3 ; the inner radius is the distance be-
tween y = 3 and y = x , so r = 3− x . The volume
is

V = π

1∫

0

(
32− (3− x)2)dx = π

1∫

0

(
6x− x2)dx =

= π

(
3x2− x3

3

)∣∣∣∣
1

0
=

8π

3
.

Example 11.12. Use the disc or washer method to find the volume of the solid
generated when the region bounded by the lines y = 0 , x = 1 and y = x is revolved
about a) the line x = 1 ; b) the y -axis; c) the line x = 4 .

Solution. In all three cases the region is revolved about a vertical line, and therefore
when finding the volume of the solid using the disc or washer method it is necessary
to integrate by y . In this case the range of y covered by the region is [0,1] , and
so integration should be done over this interval. All that is left is to determine the
radius R for each case.

It should be noted that since the variable of integration is y , the functions should
all be expressed not in terms of x (i.e. y = f (x) ), but in terms of y (i.e. x = g(y) ).

a)

x

y

0
R

1

y = x�

1

The axis of rotation is part of the boundary of the
region, so the disk method should be used. R is the
distance between the line y = x and the line x = 1 ,
so R = 1− y . The volume is

V = π

1∫

0

(1− y)2dy =−π
(1− y)3

3

∣∣∣∣
1

0
=

π

3
.
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b)

x

y

0

r

R

1

y = x�

1

In this case the axis of rotation is not part of the
boundary of the region, so the washer method should
be used. The outer radius R is the distance be-
tween the axis of rotation (the y -axis, x = 0 ) and
the boundary of the region that is furthest from the
axis, x = 1 ; R = 1− 0 = 1 . The inner radius r is
the distance between the axis of rotation (x = 0 ) and
the boundary of the region that is closest to the axis,
x = y . Therefore, r = y−0 = y . The volume is

V = π

1∫

0

(
12− y2)dy = π

(
y− y3

3

)∣∣∣∣
1

0
=

2π

3
.

c)

x

y

0
R

r

1

y = x �

4

1

As in b), the washer method should be used. The
outer radius R is the distance between x = 4 and
y = x , so R = 4− y ; the inner radius is the distance
between x = 4 and x = 1 , so r = 4− 1 = 3 . The
volume is

V = π

1∫

0

(
(4− y)2−32)dy = π

1∫

0

(
7−8y+ y2)dy = π

(
7y−4y2 +

y3

3

)∣∣∣∣
1

0
=

10π

3
.

The shell method

When using this method, it is necessary to integrate perpendicular to the axis
of revolution (unlike the disc or washer method). If the region is revolved about a
horizontal line, integrate by y , and if the region is revolved about a vertical line,
integrate by x .

As always, the radius is the distance to the axis or revolution. For every radius
R is it necessary to find the corresponding height of the shell H . The values of
R and H need to be expressed in terms of the variable of integration.

y

x

�
x = A

a b

H
R

x y = g(x)

y = f (x)

H = g(x)− f (x)

R = x−A

1

y

x

d

c

� y = A

H

R

x = ψ(y)

x = φ(y)

H = φ(y)−ψ(y)

R = A− y

y

1

The volume will equal V = 2π

b∫

a

RHdx if integrating by x and
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V = 2π

d∫

c

RHdy if integrating by y .

Example 11.13. Use the shell method to find the volume of the solid generated
when the region bounded by the lines y = 0 , x = 1 and y = x is revolved about
a) the x -axis; b) the line y =−1 ; c) the line y = 3 .

Solution. In this example the axis or revolution in each case is a horizontal line,
and therefore it will be necessary to integrate by y .
a)

x

y

0

H
R

1

y = x

�

1

The radius is the distance between the axis of revo-
lution and the current value of y : R = y−0 = y . The
height of the shell is the horizontal distance between
the line y = x and the line x = 1 , or H = 1− y .
Therefore, the volume is

V = 2π

1∫

0

y(1− y)dy = 2π

(
y2

2
− y3

3

)∣∣∣∣
1

0
=

2π

6
=

π

3
.

b)

x

y

0

R

H

�−1

1

y = x

1

The radius is as before the distance between the axis
of revolution y = −1 and the current value of y :
R = y− (−1) = y+1 . The height of the shell will be
H = 1− y , exactly as in a). The volume is therefore

V = 2π

1∫

0

(y+1)(1− y)dy = 2π

1∫

0

(
1− y2)dy =

= 2π

(
y− y3

3

)∣∣∣∣
1

0
=

4π

3
.

c)

x

y

0 H

R

3

1

y = x
�

1

The radius, found in the same way as in a) and b), is
R = 3− y , while the height again remains the same:
H = 1− y . The volume is

V = 2π

1∫

0

(3−y)(1−y)dy= 2π

1∫

0

(3−4y+y2)dy=

= 2π

(
3y−2y2 +

y3

3

)∣∣∣∣
1

0
=

8π

3
.

Example 11.14. Use the shell method to find the volume of the solid generated
when the region bounded by the lines x = 0 , x = 1 and y = x is revolved about
a) the line x = 1 ; b) the y -axis; c) the line x = 4 .

Solution. In all three cases the region is revolved about a vertical line, and therefore
when finding the volume of the solid using the shell method it is necessary to



122 CHAPTER 11. THE DEFINITE INTEGRAL

integrate by x . In this case the range of x covered by the region is [0,1] , and so
integration should be done over this interval. All that is left is to determine the
radius R for each case.

a)

x

y

0
R

H

1

y = x�

1

The radius is the distance between the axis of revolu-
tion x= 1 and the current value of x : R= 1−x . The
height of the shell is the vertical distance between the
line y = x and the line y = 0 : H = x . Therefore, the
volume is

V = 2π

1∫

0

(1− x)xdx = 2π

(
x2

2
− x3

3

)∣∣∣∣
1

0
=

π

3
.

b)

x

y

0
H

R

1

y = x�

1

The radius is as before the distance between the ax-
is of revolution x = 0 and the current value of x :
R = x−0 = x . The height of the shell will be H = x ,
exactly as in a). The volume is therefore

V = 2π

1∫

0

x2dx = 2π
x3

3

∣∣∣∣
1

0
=

2π

3
.

c)

x

y

0
R

H

1

y = x �

4

1

The radius, found in the same way as in a) and b), is
R = 4− x , while the height again remains the same:
H = x . The volume is

V = 2π

1∫

0

x(4− x)dx = 2π

(
2x2− x3

3

)∣∣∣∣
1

0
=

10π

3
.

11.79. Find the volume of the solid generated when the region bounded by the
curves y = x , x = 3 , x = 7 and y = 0 is revolved about the x -axis.

11.80. Find the volume of the solid generated when the region bounded by the
curves y = 3x , y = 2 , y = 4 and x = 0 is revolved about the y -axis.

11.81. Find the volume of the solid generated when the region bounded by the
curves y2 = 4x , and y = x is revolved about the x -axis.

11.82. Find the volume of the solid generated when the region bounded by the
curves y2 = 4x and y = x is revolved about the line x =−1 .

11.83. Find the volume of the solid generated when the region bounded by the
curves y2 = 4x and y = x is revolved about the line x = 4 .

11.84. Find the volume of the solid generated when the region bounded by the
curves y = x2 and y2 = 8x is revolved about a) the x -axis; b) the y -axis.

11.85. Find the volume of the solid generated when the region bounded by the
curves y = x2 and y2 = x is revolved about the x -axis.

11.86. Find the volume of the solid generated when the region bounded by the
curves y = x− x2 and y = 0 is revolved about a) the x -axis; b) the y -axis; c) the line
x = 2 ; d) the line x =−2 ; e) the line y =−1 ; f) the line y = 2 .
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11.87. Find the volume of the solid generated when the region bounded by the
curve x2− y2 = 1 and the lines y = 0 , x = 1 and x = 2 is revolved about the y -axis.

11.88. Find the volume of the solid generated when the region in the first quadrant
bounded by the curve y2− x+ 1 = 0 and the lines x = 2 , y = 0 is revolved about
a) the x -axis; b) the y -axis.

11.5 Volume: Solids with known cross-sections

Solids with known cross-sections are described by the form of their base and
the form of the cross-sections perpendicular to that base. If the cross sections
are perpendicular to the x -axis, then integrate by x ; if the cross sections are

perpendicular to the y -axis, then integrate by y . The volume will be V =

b∫

a

S(x)dx

or V =

d∫

c

S(y)dy , depending on what variable is being integrated.

11.89. The base of a solid is the region in the first quadrant bounded by the x -axis,
the y -axis and the line x+2y = 4 . If cross section of the solid perpendicular to the
x -axis are semicircles, what is the volume of the solid?

11.90. The base of a solid B is the region enclosed by the graph of y = ex , the
line y = e , and the y -axis. If the cross sections of B perpendicular to the y -axis are
squares, find the volume of B .

11.91. Find the volume of the solid with a base defined by the lines y = x−1 ,
y = 2− x , and the y -axis, and the cross-section parallel to the y -axis of which are
squares.

11.92. A solid has a circular base of radius 1 with the center at the origin. Parallel
cross sections perpendicular to the base are equilateral triangles. Find the volume of
the solid.

11.93. The base of a solid is the circle x2 + y2 = 16 , and every plane section
perpendicular to the x -axis is a rectangle whose height is twice the distance of the
plane section from the origin. Find the volume of the solid.

11.6 Position, Velocity and Acceleration

Given the velocity function v(t) of an object and the position of this object at
some moment s(t0) = s0 , the position of the object for any value of t is given by

s(t) =
t∫

t0

v(u)du+ s0.
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In the same way, given the acceleration function a(t) and an initial condition
for velocity v(t0) = v0 ,

v(t) =
t∫

t0

a(u)du+ v0.

The total distance that an object travels from time t = t1 to t = t2 is given by

t2∫

t1

|v(t)|dt.

The displacement is given by

s(t2)− s(t1) =

t2∫

t1

v(u)du.

Example 11.15. The acceleration of a particle moving along the x -axis is given by
a(t) = t2 +3t . Find the position of the object at any time t if the particle’s velocity
at t = 1 was 2 , and the particle was located at s = 2 at time t = 2 .

Solution. First find the velocity function:

v(t) =
t∫

1

(
u2 +3u

)
du+2 =

u3

3

∣∣∣∣∣

t

1

+
3
2

u2

∣∣∣∣∣

t

1

+2 =
t3

3
− 1

3
+

3
2
(t2−1)+2 =

=
1
3

t3 +
3
2

t2 +
1
6
.

Now find the position of the particle:

s(t) =
t∫

2

(
1
3

u3 +
3
2

u2 +
1
6

)
du+2 =

1
12

u4

∣∣∣∣∣

t

2

+
1
2

u3

∣∣∣∣∣

t

2

+
1
6

u

∣∣∣∣∣

t

2

+2 =

=
1

12
(t4−16)+

1
2
(t3−8)+

1
6
(t−2)+2 =

1
12

t4 +
1
2

t3 +
1
6

t−1.

11.94. The position of a particle, which starts moving at time t = 0 , is given
by x(t) = 6t− t2 . Where will the particle be at time t = 5? What distance will the
particle have traveled?

11.95. The speed of a point moving along a straight line, in meters per second,
is given by v(t) = 3t2−3t . How far away will the point be from its starting place in
4 seconds? What is the total distance the point will have traveled?

11.96. An automobile traveling at a speed of 48 kilometers per hour begins to
brake and stops in 3 seconds. Find the distance the automobile had traveled before
stopping if it was decelerating at a constant rate.

11.97. A jet accelerates from 100 meters per second to 200 meters per second
in 20 seconds. If its acceleration is constant, find the acceleration and the distance it
travels during this time.
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11.98. A bicyclist traveling at 37 ft/sec ceases pedaling and coasts until his speed
decreases to 29ft/sec. The deceleration is proportionate to the square of the velocity,
where the constant of proportionality is k . a) Find the velocity of the bicyclist as
a function of k and time t . b) Find k if the deceleration is 1 ft/ sec2 at 37 ft/sec .
c) How long will it take for the bicycle to reach 29 ft/sec? d) How far will the bicycle
have traveled by the time it reaches the speed of 29 ft/sec?

11.99. The acceleration of a particle moving along the x -axis at time t is given
by a(t) = 6t−2 . If the velocity is 25 when t = 3 and the position is 10 when t = 1 ,
then find the position x(t) as a function t .

11.100. At time t (t > 0) , the acceleration of a particle moving on the x -axis is
a(t) = t + sin t . At time t = 0 , the velocity of the particle is −2 . For what value of t
will the velocity of the particle be zero?

11.101. A ball is thrown upward from ground level with an initial speed of 35 me-
ters per second so that its height is given byy = 35t−5t2 . How high does the ball go?
How fast will it strike the ground?

11.102. When fired from rest at ground level, a small rocket rises vertically so
that its acceleration after t seconds is 6t m

sec2 . This continues for the 10 seconds that
its fuel lasts. Thereafter, the rocket’s acceleration is 10 m

sec2 downward, due to gravity.
In how many seconds will the rocket strike the ground after falling back?



Chapter 12.

IMPROPER INTEGRALS

12.1 Unbounded functions (Type I)

Definition. Let f be continuous on [a,b) and discontinuous at x = b . Then

b∫

a

f (x)dx = lim
c→b−

c∫

a

f (x)dx,

provided the limit exists.

Definition. Let f be continuous on (a,b] and discontinuous at x = a . Then

b∫

a

f (x)dx = lim
c→a+

b∫

c

f (x)dx,

provided the limit exists.

Definition. Let f be continuous for all x ∈ [a,b] except for x = t , t ∈ (a,b) .

Assume further that

t∫

a

f (x)dx and

b∫

t

f (x)dx exist as given above. Then

b∫

a

f (x)dx =
t∫

a

f (x)dx+
b∫

t

f (x)dx.

Note that, in order for

b∫

a

f (x)dx to exist when f is unbounded at x0 ∈ (a,b) ,

it is necessary for both of the integrals

t∫

a

f (x)dx and

b∫

t

f (x)dx to exist.

Example 12.1. Find the values of p such that the integral

1∫

0

dx
xp is convergent.

Solution. We will first consider the case p = 1 . We have:

1∫

0

dx
x

= lim
t→0+

lnx|1t =− lim
t→0+

ln t @.
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Assuming now p 6= 1 , we have:

1∫

0

dx
xp = lim

t→0+

1∫

t

dx
xp = lim

t→0+

x−p+1

−p+1

∣∣∣∣
1

t
=

1
1− p

− lim
t→0+

t1−p

1− p
.

If 1− p > 0 , then this limit exists; if 1− p < 0 , then it does not (remember that the

case p = 1 was considered separately). Thus, the integral

1∫

0

dx
xp exists for p < 1 .

Example 12.2. Determine whether

π∫

0

dx
cos2 x

converges.

Solution. The integrand is unbounded at x = π/2 . Therefore,

π/2∫

0

dx
cos2 x

=

π∫

0

dx
cos2 x

+

π∫

π/2

dx
cos2 x

.

We consider the first integral:

π∫

0

dx
cos2 x

= lim
t→π/2−

tanx|t0 = lim
t→π/2−

tan t = ∞.

Without even considering

π∫

π/2

dx
cos2 x

, we conclude that

π∫

0

dx
cos2 x

does not converge.

Find the following improper integrals, or determine that they do not converge.

12.1.

33∫

1

dx
5
√

x−1
12.2.

3∫

0

dx
5
√

x−1

12.3.

3∫

0

dx
5
√

(x−1)6
12.4.

1∫

−1

√
1+ x
1− x

dx

12.5.

π/2∫

0

dx
1+ tanx

12.6.

1∫

0

dx√
1− x2

12.7.

9∫

1

dx
3
√

x−1
12.8.

1∫

0

dx
x+
√

x

12.9.

1∫

0

dx
ex−1

12.10.

1∫

0

(1− x)−2/3dx
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12.11.

π/2∫

0

tanxdx 12.12.

1∫

0

√
x lnxdx

12.13.

∞∫

0

dx√
x(1+ x)

12.14.

π/2∫

0

dx
1− tan2 x

12.2 Unbounded intervals (Type II)

Definition. If

b∫

a

f (x)dx exists for all b > a , then
∞∫

a

f (x)dx = lim
b→+∞

b∫

a

f (x)dx,

provided the limit exists.

Definition. If

b∫

a

f (x)dx exists for all a < b , then
b∫

−∞

f (x)dx = lim
a→−∞

b∫

a

f (x)dx,

provided the limit exists.

Since these improper integrals are in fact limits at infinity just like in sec-

tion 3.1, the concept of convergence is applicable. Thus, if e.g.

∞∫

a

f (x)dx exists,

we may also say that it converges, and if

∞∫

a

f (x)dx does not exist, we may also

say that it diverges.
There is a close link between improper integrals on the interval [a,∞) and

infinite series. Indeed, taking sequentially b = 2,3,4, . . . the integrals
2∫

1

f (x)dx ,

3∫

1

f (x)dx ,
4∫

1

f (x)dx , etc. form a sequence very much like the N -th partial sums

in series. Many properties of improper integrals on unbounded intervals may be
analyzed by using series, and vice versa.
Theorem (Necessary condition for the convergence of an improper inte-

gral on [a,∞) )

If

∞∫

a

f (x)dx converges, then lim
x→∞

f (x) = 0 .
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Definition. Assuming that

c∫

−∞

f (x)dx and

∞∫

c

f (x)dx are both convergent for any

value of c , then
∞∫

−∞

f (x)dx =
c∫

−∞

f (x)dx+
∞∫

c

f (x)dx.

Example 12.3. Find the following improper integrals, or determine that they do not
converge.

a)

∞∫

1

dx
x

; b)

∞∫

1

dx
x2 ; c)

∞∫

−∞

xe−x2
dx.

Solution. a)

∞∫

1

dx
x
= lim

b→+∞

b∫

1

dx
x
= lim

b→+∞
lnb=∞ . Therefore, this integral diverges.

b)

∞∫

1

dx
x2 = lim

b→+∞

b∫

1

dx
x2 = lim

b→+∞

(
−1

x

)∣∣∣∣
b

1
= lim

b→+∞

(
1− 1

b

)
= 1 . This integral

converges.
c) We can split this integral at any point. Choose c = 0 for simplicity, then

∞∫

−∞

xe−x2
dx =

0∫

−∞

xe−x2
dx+

∞∫

0

xe−x2
dx.

We have:

0∫

−∞

xe−x2
dx= lim

a→−∞

0∫

a

xe−x2
dx= lim

a→−∞

(
−1

2
e−x2

)∣∣∣∣
0

a
= lim

a→−∞

(
−1

2
+

1
2

e−a2
)
=−1

2
,

and

∞∫

0

xe−x2
dx = lim

b→∞

b∫

0

xe−x2
dx = lim

b→∞

(
−1

2
e−x2

)∣∣∣∣
b

0
= lim

b→∞

(
−1

2
e−b2

+
1
2

)
=

1
2
.

Since both of these integrals are convergent, the initial integral is also convergent,
and it equals

∞∫

−∞

xe−x2
dx =

0∫

−∞

xe−x2
dx+

∞∫

0

xe−x2
dx =−1

2
+

1
2
= 0.

One may have said that the integral equals zero, simply because the integrand is
an odd function and the interval of integration is symmetrical with respect to the
origin; however, this argument ignores the existence issue and is thus invalid.



130 CHAPTER 12. IMPROPER INTEGRALS

Find the following improper integrals, or determine that they do not converge.

12.15.

0∫

−∞

dx√
3− x

12.16.

∞∫

−2

sinxdx

12.17.

∞∫

1

dx
x5 12.18.

∞∫

2

dx
(3+ x)3

12.19.

∞∫

−1

e−5xdx 12.20.

∞∫

1

xdx
(x2 +5)3

12.21.

∞∫

0

x2

x3 +1
dx 12.22.

∞∫

−∞

dx
25+4x2

12.23.

∞∫

3

e−3xdx
9+ e−3x 12.24.

2∫

−∞

dx
(x−5)4/3

12.25.

∞∫

1

(7x+4)−4/5 dx 12.26.

−5∫

−∞

e9xdx

12.27.

∞∫

2

lnx
x

dx 12.28.

∞∫

0

e−x cosxdx

12.29.

∞∫

−2

x2e−2xdx 12.30.

∞∫

0

ex−1
e2x +1

dx

12.31.

∞∫

0

dx
x3 +8

12.32.

∞∫

0

dx
x2 +2x+2

12.33. The unbounded region enclosed by the Gaussian curve y = 1√
2π

e−
x2
2 and

the x -axis is revolved about the x -axis. Given that the area under the Gaussian curve
is equal to 1, what is the volume of the corresponding solid of revolution?

12.34. The region enclosed by the Gaussian curve y = 1√
2π

e−
x2
2 (x ≥ 0 ) and the

x -axis is revolved about the y -axis. Find the volume of the corresponding solid of
revolution.

12.35. (Gabriel’s Horn) Consider the unbounded region enclosed by the x -axis,
the line x = 1 and the curve y= 1

x . Show that the area of this region is infinite, but the
volume of the solid produced when the region is revolved about the x -axis if finite.
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12.3 Convergence issues

Theorem (The comparison test)

Let f and g be functions such that 0 ≤ f (x) ≤ g(x) for all x ∈ (a,b) ,
where the interval (a,b) could be infinite, or f and g may be unbound-

ed. If

b∫

a

g(x)dx converges, then

b∫

a

f (x)dx also converges; and if

b∫

a

f (x)dx

diverges, then

b∫

a

g(x)dx also diverges.

A special application of the comparison test establishes the link between im-
proper integrals of positive functions on the interval [a,∞) and positive infinite
series. Thus, the entire apparatus for examining the convergence of positive series
(see section 7.2) can be used to determine the convergence of improper integrals
of positive functions.

Theorem. If
∞

∑
n=1

f (n) diverges, then

∞∫

1

f (x)dx diverges as well; if

∞∫

1

f (x)dx

converges, then
∞

∑
n=1

f (n) converges as well.

0
x

y

1 2 3 4 5 ...

y = f (x)

1

Theorem. If
∞

∑
n=1

f (n) converges, then

∞∫

1

f (x)dx converges as well; If

∞∫

1

f (x)dx diverges, then
∞

∑
n=1

f (n) diverges as well.

0
x

y

1 2 3 4 5 ...

y = f (x)

1
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This is the substance of the proof of the criteria for the convergence of the
generalized harmonic series (see page 62).

Also like series, the concepts of absolute and conditional convergence are
applicable:

Definition. If the improper integral

b∫

a

| f (x)|dx converges, then

b∫

a

f (x)dx con-

verges absolutely; if

b∫

a

f (x)dx converges but

b∫

a

| f (x)|dx does not, then

b∫

a

f (x)dx converges conditionally.

Determine whether or not the following integrals converge using the comparison
test.

12.36.

3∫

−2

dx
x3 12.37.

∞∫

0

e−7x|sinx|dx

12.38.

∞∫

8

dx
3
√

x−1
12.39.

∞∫

1

sin2(1/x)√
x

dx

12.40.

∞∫

3

lnxdx
x4 +1

12.41.

∞∫

1

x3−2x2 + x+1
x4 + x+8

dx

12.42.

∞∫

1

lnxdx
x2 +1

12.43.

∞∫

0

e−x2

x2 dx

12.44.

1∫

0

sin
√

x
x4 + x

dx 12.45.

π/2∫

0

dx√
sinx

12.46.

π/2∫

0

1+ cosx
x

dx 12.47.

∞∫

1

lnxdx
1+ x2

12.48.

∞∫

0

dx
3
√

x+ x2 12.49.

∞∫

1

dx√
1+ x4

12.50.

2∫

1

dx
x2 lnx

12.51.

∞∫

2

dx
x2 lnx

12.52.

∞∫

1

dx
x2 lnx
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Determine whether or not the following integrals converge by comparing them to
the appropriate series.

12.53.

∞∫

1

(
x+1

3x

)x

dx 12.54.

∞∫

1

2x−1
(
√

2)x
dx

12.55.

∞∫

1

x 3
√

x
4
√

x7 +3
dx 12.56.

∞∫

1

x3

4x dx

12.57.

∞∫

1

4xdx
x3x 12.58.

∞∫

1

dx
3x√x

12.59.

∞∫

1

(
x

x+1

)x

dx 12.60.

∞∫

1

(
x

x+1

)x2

dx

12.61.

∞∫

1

dx
lnx(x+1)

12.62.

∞∫

1

tan
3+ x

x2 dx

12.63.

∞∫

1

(
tan−1

(
1
x

))x

dx 12.64.

∞∫

1

sin
π

2x dx

12.65. Consider the divergent integrals

∞∫

1

f (x)dx and

∞∫

1

g(x)dx . What can be

said about the convergence of i)

∞∫

1

( f (x)+g(x))dx ; ii)
∞∫

1

f (x)g(x)dx ; iii)
∞∫

1

f (x)
g(x)

dx ,

assuming g(x) 6= 0 for all x≥ 1?

12.66. Consider the divergent integral

∞∫

1

f (x)dx and the convergent integral

∞∫

1

g(x)dx . What can be said about the convergence of i)

∞∫

1

( f (x)+g(x))dx ;

ii)

∞∫

1

f (x)g(x)dx ; iii)
∞∫

1

f (x)
g(x)

dx , assuming g(x) 6= 0 for all x ≥ 1 ; iv)
∞∫

1

g(x)
f (x)

dx ,

assuming f (x) 6= 0 for all x≥ 1?

12.67. If

∞∫

1

f (x)dx converges and |g(x)|< | f (x)| for all x≥ 1 , is it true that the

integral

∞∫

1

g(x)dx converges as well?

12.68. Show that if
∞

∑
n=1

an converges and an ≥ 0 , then
∞

∑
n=1

nan2 also converges.
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12.4 The principal value of an improper integral

In many applications, it is possible to assign a value to divergent improper
integrals in a logical way. This is done by introducing the concept of principal
value.

Definition. The Cauchy principal value of a Type I improper integral is

p.v.

b∫

a

f (x)dx = lim
ε→0+




t−ε∫

a

f (x)dx+
b∫

t+ε

f (x)dx


 ,

where lim
x→t−

f (x) =±∞ and lim
x→t+

f (x) =∓∞ .

Definition. The Cauchy principal value of a Type II improper integral is

p.v.

∞∫

−∞

f (x)dx = lim
t→∞

t∫

−t

f (x)dx.

Some alternative notations for the principal value of an integral are

PV
b∫

a

f (x)dx , P
b∫

a

f (x)dx and −
b∫

a

f (x)dx .

Example 12.4. Find p.v.

3∫

−2

dx
x
.

Solution. The integrand is unbounded at x = 0 . We have:

p.v.

3∫

−2

dx
x

= lim
ε→0+



−ε∫

−2

dx
x
+

3∫

ε

dx
x


=

= lim
ε→0+

(
ln |x|

∣∣−ε

−2 + ln |x|
∣∣3
ε

)
= lim

ε→0+
(lnε− ln2+ ln3− lnε) = ln

3
2
.

Note that this result is the same as the result of the naïve (and incorrect!) calculation
3∫

−2

dx
x

= ln |x|
∣∣3
−2 = ln

3
2
(in actual fact, this integral does not exist). Cauchy’s prin-

cipal value, however, gives a mathematically rigorous way to interpret this naïve
result.



Chapter 13.

DOUBLE AND ITERATED INTEGRALS

13.1 Description of regions on the coordinate plane

Regions on the coordinate plane are often described by the graphs of functions
or equations that give its boundaries. However, it will be necessary to transform
this information into systems of inequalities in order to discuss double and iterated
integrals later.

We will consider two methods of describing regions on the coordinate plane
with the use of inequalities. Graphically, these methods use either vertical or
horizontal lines.

Using vertical lines, it is necessary to first determine the range of x that is
covered by the region. The second step is to then determine the range of y that is
covered by the region for each concrete value of x .

Using horizontal lines, the process is reversed: first it is necessary to find the
range of y that is covered by the region, and then the range of x that is covered
by the region for each concrete value of y .

Example 13.1. Describe the region D bounded by the
lines y = 0 , y = x2 and x = 2 using in-
equalities.

y

x
20

y = x2

1

Solution. We will first use vertical lines. Note that x changes from 0 to 2 .
y

x
20

y = x2

1

We see that each vertical line goes from the x -axis
(y = 0 ) to the curve y = x2 . Therefore, the answer is
D =

{
(x,y) : 0≤ x≤ 2,0≤ y≤ x2} .

We will now consider horizontal lines. Note that y changes from 0 to 4 .
y

x
20

y = x2

4

1

We see that each horizontal line goes from the curve
y = x2 (x =

√
y ) to the vertical line x = 2 . Therefore,

the answer is D =
{
(x,y) : 0≤ y≤ 4,

√
y≤ x≤ 2

}
.
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Example 13.2. Describe the region D bounded by the line
y = 0 and the curve y = 9− x2 using in-
equalities.

y

x
3−3 0

y = 9− x2

1

Solution. We will first use vertical lines. Note that x changes from −3 to 3 .
y

x
3−3 0

y = 9− x2

1

We see that each vertical line goes from the x -axis
(y = 0 ) to the curve y = 9−x2 . Therefore, the answer
is D =

{
(x,y) :−3≤ x≤ 3,0≤ y≤ 9− x2} .

We will now consider horizontal lines. Note that y changes from 0 to 9 .
y

x
3−3 0

y = 9− x2

1

We see that each horizontal line goes from one
branch of the curve y = 9 − x2 to the oth-
er, i.e. from the curve x = −√9− y to the
curve x =

√
9− y . Therefore, the answer is

D =
{
(x,y) : 0≤ y≤ 9,−√9− y≤ x≤√9− y

}
.

Example 13.3. Describe the region D bound-
ed by the lines y = x

2 , y = 2x
and y = 3− x using inequali-
ties.

y

x

(1,2)

(2,1)

0

y = x
2

y = 2x

�

�

�

y = 3− x

1

Solution. We will first use vertical lines. Note that x changes from 0 to 2 .
y

x

(1,2)

(2,1)

0

y = x
2

y = 2x

�

�

�

1 y = 3− x

1

The main difference in this problem compared to the
preceding examples is that while the bottom boundary
y = x

2 is the same for all vertical lines, the top bound-
ary is not: y = 2x for 0 ≤ x ≤ 1 and y = 3− x for
1≤ x≤ 2 . Therefore, the answer is

D =
{
(x,y) : 0≤ x≤ 1, x

2 ≤ y≤ 2x
}⋃{

(x,y) : 1≤ x≤ 2, x
2 ≤ y≤ 3− x

}
.
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We will now consider horizontal lines. Note that y changes from 0 to 2 .
y

x

(1,2)

(2,1)

0

y = x
2

y = 2x

�

�

�1

y = 3− x

1

Just like for vertical lines, here it is necessary to take
into account that while the left boundary is always the
same (y = 2x , or x = y

2 ), the right boundary is not:
y= x

2 (x= 2y ) for 0≤ y≤ 1 , and y= 3−x (x= 3−y )
for 1≤ y≤ 2 . Therefore, the answer is

D =
{
(x,y) : 0≤ y≤ 1, y

2 ≤ x≤ 2y
}⋃{

(x,y) : 1≤ y≤ 2, y
2 ≤ x≤ 3− y

}
.

Use inequalities to describe the regions bounded by the graphs of the functions
given below.

13.1. y = x
2 , y = 0, x = 4 13.2. y = x, y = 2− x,

x = 0

13.3. y =
√

4− x2, y = 0 13.4. y = 2x+6, x = 0,
y = 0

13.5. y =
√

x+4, y = x+4 13.6. x2 +4y2 = 16, y = 0,
x = 0 (1st quadrant)

13.7. y = 3
2x− 1

2 ,
y =−2

3x+ 5
3 ,

y = x
5 +

17
5

13.8. y = 3
x , y = 4− x

13.9. y = sinx, y = cosx,
y = 0 (x≥ 0)

13.10. y = lnx, x = 1
e , x = e

Sketch the following regions.

13.11. D = {(x,y) :−1≤ x≤ 0,−x−1≤ y≤ x+1}⋃

⋃{(x,y) : 0≤ x≤ 1,x−1≤ y≤−x+1}

13.12. D =
{
(x,y) :−1≤ x≤ 1, −x−1

2 ≤ y≤ x+1
2

}

13.13. D =
{
(x,y) :−2≤ x≤ 2,x2−4≤ y≤ 4− x2}

13.14. D =
{
(x,y) :−1≤ x≤ 1,x2−4≤ y≤ 4− x2}

13.15. D =
{
(x,y) :−3≤ x≤ 3,−

√
x2 +5≤ y≤

√
x2 +5

}

13.16. D =
{
(x,y) :−1≤ x≤ 0,x≤ y≤ x3}⋃

⋃{
(x,y) : 0≤ x≤ 1,x3 ≤ y≤ x

}
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13.2 Double integrals

Definition. A function of two variables is a rule by which a value is assigned
to z for all (x,y) in a certain region D on the coordinate plane: z = f (x,y) .
The region D is called the domain of f .

Graphically, a function of two variables can be visualised as a surface in
three-dimensional space.

For positive f (x,y) , the definite integral is equal to the volume under the
surface z = f (x,y) and above the xy -plane for x and y in the region D :

V =
∫∫

D

f (M)ds =
∫∫

D

f (x,y)dxdy.

By analogy with definite integrals of one variable, the double integral is de-
fined in the following way:

1. Divide the region D into n subregions. Let each subregion have an area of

4Si , so that
n

∑
k=1
4Si = S , where S is the area of D . Furthermore, let each

subregion have a diameter di , where the diameter of a region is understood
as the greatest distance between any two points on the boundary of the
subregion.

2. Arbitrarily choose a point Mi = (xi,yi) from each subregion.

3. Construct the sum
n

∑
i=1

f (Mi)4Si =
n

∑
i=1

f (xi,yi)4Si .

4. Consider the limit as the number of subregions increases without bound,
but in such a way that maxdi→ 0 . This limit, given that it exists and does
not depend on how the subregions were formed or how the points Mi were
chosen, is called the double integral of f (x,y) on the region D :

∫∫

D

f (M)ds = lim
maxdi→0

n

∑
i=1

f (Mi)4Si.

Properties of double integrals

1.
∫∫

D

k f (x,y)dxdy = k
∫∫

D

f (x,y)dxdy ;

2.
∫∫

D

(
f (x,y)+g(x,y)

)
dxdy =

∫∫

D

f (x,y)dxdy+
∫∫

D

g(x,y)dxdy ;

3. If D = D1 +D2 , where D1 and D2 do not have any common points, then∫∫

D

f (x,y)dxdy =
∫∫

D1

f (x,y)dxdy+
∫∫

D2

f (x,y)dxdy .
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4. If f (x,y) ≤ g(x,y) for all (x,y) ∈ D , then∫∫

D

f (x,y)dxdy≤
∫∫

D

g(x,y)dxdy .

5. If m ≤ f (x,y) ≤ M for all (x,y) ∈ D and S is the area of the region D ,

then mS≤
∫∫

D

f (x,y)dxdy≤MS .

6. If f (x,y) is continuous on D , then there exists a point P0 = (x0,y0) ∈ D

such that
∫∫

D

f (x,y)dxdy = f (P0)S .

Calculation of double integrals

Let f (x,y) be a function of two variables defined on a region D bounded
below and above by y = φ1(x) and y = φ2(x) and to the left and right by x = a
and x = b . Then the double integral of f (x,y) over D is equal to

∫∫

D

f (x,y)dxdy =
b∫

a




φ2(x)∫

φ1(x)

f (x,y)dy


dx.

The expression in the right side of this equation is called an iterated integral.
Iterated integrals are also often written in the following forms:

b∫

a




φ2(x)∫

φ1(x)

f (x,y)dy


dx =

b∫

a

φ2(x)∫

φ1(x)

f (x,y)dydx =
b∫

a

dx

φ2(x)∫

φ1(x)

f (x,y)dy.

Note that the limits of integration correspond to the description of the region
D in terms of inequalities (those described by vertical lines).

If the region D is bounded to the below and above by y = c and y = d and
below and to the left and right by x = ψ1(y) and x = ψ2(y) , then the double
integral of f (x,y) over D is equal to

∫∫

D

f (x,y)dxdy =
d∫

c




ψ2(y)∫

ψ1(y)

f (x,y)dx


dy.

Again, the limits of integration are found by describing the region in terms of
inequalities (by horizontal lines). The iterated integral can also be written in the
following forms:

d∫

c




ψ2(y)∫

ψ1(y)

f (x,y)dx


dy =

d∫

c

ψ2(y)∫

ψ1(y)

f (x,y)dxdy =
d∫

c

dy

ψ2(y)∫

ψ1(y)

f (x,y)dx.

Note that the order of dx and dy in the iterated integral is of great importance!
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Example 13.4. Change the order of integration in the iterated integral

1∫

0

dx

√
x∫

x

f (x,y)dy.

Solution. The region that is being integrated is defined by the inequalities

D =
{
(x,y) : 0≤ x≤ 1,x≤ y≤√x

}
.

If we sketch the region and consider horizontal lines rather than vertical lines, then
we will find:

y

x
1

1

0

y =
√

x
y = x

1

D =
{
(x,y) : 0≤ y≤ 1,y2 ≤ x≤ y

}
.

Therefore, the iterated integral can be rewritten as

1∫

0

dx

√
x∫

x

f (x,y)dy =
1∫

0

dy

y∫

y2

f (x,y)dx.

Example 13.5. Change the order of integration in the iterated integral

4∫

0

dy

y/2∫

0

f (x,y)dx+
6∫

4

dy

6−y∫

0

f (x,y)dx.

Solution. First we will sketch the region D given by

D =
{
(x,y) : 0≤ y≤ 4,0≤ x≤ y

2

}⋃{
(x,y) : 4≤ y≤ 6,0≤ x≤ 6− y

}

and consider vertical lines, rather than horizontal lines:
y

x
2

4

6

0

y = 2x

y = 6− x

1

D = {(x,y) : 0≤ x≤ 2,2x≤ y≤ 6− x}

Therefore, after changing the order of integration we will have

4∫

0

dy

y/2∫

0

f (x,y)dx+
6∫

4

dy

6−y∫

0

f (x,y)dx =
2∫

0

dx
6−x∫

2x

f (x,y)dy.
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Change the order of integration of the following iterated integrals.

13.17.

1∫

0

dx
x∫

0

f (x,y)dy 13.18.

4∫

0

dy
2∫

y/2

f (x,y)dx

13.19.

2∫

1

dx
2x−1∫

1

f (x,y)dy 13.20.

2∫

1

dx
lnx∫

0

f (x,y)dy

13.21.

6∫

1

dx
31−x∫

30/x

f (x,y)dy 13.22.

1∫

0

dy

1+y∫

1−y

f (x,y)dx

13.23.

1∫

−1

dx
1+x∫

−x

f (x,y)dy

Example 13.6. Find the double integral of f (x,y) = x+ y over D , where D is the
region bounded by the graphs of y = x2 and y = 1 .

Solution. First we need to rewrite the double integral as an iterated integral. The
boundaries of the iterated integral can be found by describing D in terms of in-
equalities. For instance, if we consider vertical lines, then we will have:

y

x
1−1 0

1

D =
{
(x,y) :−1≤ x≤ 1,x2 < y < 1

}
.

The integral will then equal:

∫∫

D

f (x,y)dxdy =
1∫

−1

dx
1∫

x2

(x+ y)dy =
1∫

−1




1∫

x2

(x+ y)dy


dx =

=

1∫

−1

(
xy+

y2

2

)∣∣∣∣
1

x2
dx =

1∫

−1

(
x+

1
2
− x3− x4

2

)
dx =

=

(
x2

2
+

x
2
− x4

4
− x6

10

)∣∣∣∣
1

−1
=

4
5
.

It is possible of course to describe D in a different way:
y

x
1−1 0

1

D =
{
(x,y) : 0≤ y≤ 1,−√y < x <

√
y
}
.

The integral will equal:

∫∫

D

f (x,y)dxdy =
1∫

0

dy

√
y∫

−√y

(x+ y)dx =
1∫

0




√
y∫

−√y

(x+ y)dx


dy =
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=

1∫

0

(
x2

2
+ xy

)∣∣∣∣

√
y

−√y
dy =

1∫

0

(y
2
+ y3/2− y

2
+ y3/2

)
dy = 2

2
5

y5/2
∣∣∣∣
1

0
=

4
5
.

The two results are, of course, exactly the same.

Find the following double integrals:

13.24.
∫∫

D

xydxdy, D =
{
(x,y) :−1≤ x≤ 2,−x2 ≤ y≤ x+1

}

13.25.
∫∫

D

(x2 + y2)dxdy, D =
{
(x,y) :−1≤ x≤ 1,2x2 ≤ y≤ x2 +1

}

13.26.
∫∫

D

lnydxdy, D =
{
(x,y) : e≤ y≤ e2,y≤ x≤ 2y

}

13.27.
∫∫

D

ex/ydxdy, D =
{
(x,y) : 1≤ y≤ 2,y≤ x≤ y3}

13.28.
∫∫

D

(4xy− y3)dxdy, D is the region bounded by y =
√

x and y = x3

13.29.
∫∫

D

(6x2−40y)dxdy, D is the triangle with vertices (0,3), (1,1), (5,3)

Find the following iterated integrals after reversing the order of integration.

13.30.

3∫

0

dx
9∫

x2

x3ey3
dy 13.31.

8∫

0

dy
2∫

3√y

√
x4 +1dx
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1
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9
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6 . 6.25.
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. 6.73. a =−1.5 , b = 4.5 . 6.74. a≤− e

6
and a > 0 . 6.77. Minimum y = 0 at x = 0 ; maximum y = 1 at x =±1 .
6.78. Minimum y =−1 at x =−1 ; maximum y = 1 at x = 1 . 6.79. Minimum
y = 0 at x = 2 ; maximum y = 3 at x = 1 . 6.80. Minimum y =− 1

24 at x = 7
5 .

6.81. Minimum y = 8
3 at x =−2 ; maximum y = 4 at x = 0 . 6.82. Minimum

y =−3 3√2
8 at x = 3

4 . 6.83. Local maximum y = 1 at x = 1 . 6.84. Maximum
y = 1

ln3 at x =−3 . 6.85. Maximum y = π

4 − ln2
2 at x = 1 . 6.86. 2; 66. 6.87. 0.75;

13. 6.88. 2; 6. 6.89. −10 ; 2. 6.90. −1 ; 0.6. 6.91. 0.6; 1. 6.92. 1; 3. 6.93. −π

2 ;
π

2 . 6.94. ln3 ; ln19 . 6.95. 0; 132. 6.96. 0; 3
√

9 . 6.97. 0; π

4 . 6.98.
(1

e

)1/e
; no

maximum value. 6.99. 3 and 6 . 6.100. 21 m
sec2 . 6.101. y = 9−3x

4 ; y = 3x+9
4 .

6.102. 5ft and 5ft. 6.103. a) 4·203π

27 ; b) 800π . 6.104. 30◦ and 60◦ . 6.105. 2
√

3πL3

27 .
6.106. 20. 6.107. a) 30 m.p.h.; b) 30.373 m.p.h.. 6.108. 2m sides and 6m height.
6.109. 15. 6.110. 500. 6.111. 3

√
2 and 6. 6.112.

√
3 . 6.113. 2ab . 6.114. 4cm and

6cm. 6.115.
√

aS
b and

√
bS
a . 6.116.

√
300 feet. 6.117. 28

√
13

13
km
min . 6.118.

√
2

2 .

6.123. a) 1; b) 1; c) 5. 6.124. a) The solid line is the graph of h′(x) . 6.127. The
function is odd. Maximum y(1) = 0.5 , minimum y(−1) =−0.5 . Inflection points
at x =−

√
3 , x = 0 , x =

√
3 . Asymptote y = 0 . 6.128. Not defined at x =±1 .

The function is odd. No extremes. Inflection point at x = 0 . Asymptotes x =−1 ,
x = 1 , y = 0 . 6.129. Not defined at x = 0 . Minimum y(0) = 0 , no maximums.
Inflection point at x =− 3

√
2 . Asymptote x = 0 . 6.130. Not defined at x =−1 .

Maximum y(−1) = 2
27 , minimum y(1) = 0 . Inflection points at x = 5±2

√
3 .

Asymptotes x =−1 and y = 0 . 6.131. Not defined at x = 0 . Maximums y(1) = 7
2

and y(−3) =−11
6 , minimum y(2) = 27

8 . Inflection point at x = 9
7 . Asymptotes

x = 0 and y = 0.5x+1 . 6.132. Maximum y(1) = 1
e , no minimums. Inflection

point at x = 2 . Asymptote y = 0 . 6.133. The function is even. Minimum y(0) = 0 ,
no maximums. Inflection points at x =±1 . No asymptotes. 6.134. Defined for
x > 0 . No extremes. Inflection point at x = e3/2 . Asymptotes x = 0 and y = x .
6.135. Symmetrical with respect to the line x = 1 . Maximum y(1) = e , no
minimums. Inflection points at x = 1±

√
2

2 . Asymptote y = 0 . 6.136. Not defined
at x = 0 . Maximum y(−1) = 1

e , minimum y(2) = 4
√

e . Inflection point at
x =−2

5 . Asymptotes x = 0 and y = x+3 . 6.137. The function is odd. Maximum
y(−1) = π

2 −1 , minimum y(1) = 1− π

2 . Inflection point at x = 0 . Asymptotes
y = x±π . 6.138. Maximum y( 7

11) = 2.2 , minimum y(1) = 0 . Inflection points

at x =−1 and x = 7±3
√

3
11 . No asymptotes. 6.139. Defined for −1≤ x≤ 1 . The

graph is symmetrical with respect to both axes. Maximum and minimum
|y|= 0.5 at x =±

√
2

2 . Inflection point at x = 0 . No asymptotes. 6.140. Defined
for −1≤ x≤ 1 . The graph is symmetrical with respect to both axes. Maximum
and minimum |y|= 1 at x = 0 . Inflection points at ±

√
2

2 . No asymptotes..
6.141. Not defined at x = π

2 + kπ , k ∈ Z . Periodic with period π . No extremes.
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No inflection points. Asymptotes x = π

2 + kπ . 6.142. The function is even.
Maximum y(0) = 3 , minimums y(±2) =−1 . No inflection points. No asymptotes.
6.143. The function is even. Minimum y = 0 at x = 0 , no maxima. No inflection
points. Asymptote y = 1 . 6.144. The function is odd. No extremes. Inflection

point at x = 0 . No asymptotes. 6.145. Function defined for x≤ 0 and x≥ 2
3
.

Maximum y(2
3) = π , minimum y(0) = 0 . No inflection points. Asymptote y = π

3 .

Chapter 7.

7.7. Divergent. 7.8. Divergent. 7.9. Divergent. 7.10. Divergent. 7.11. Divergent.
7.12. Divergent. 7.13. Convergent. 7.14. Divergent. 7.15. Convergent.
7.16. Divergent. 7.17. Convergent. 7.18. Convergent. 7.19. Divergent.
7.20. Convergent. 7.21. Divergent. 7.22. Convergent. 7.23. Divergent.
7.24. Convergent. 7.25. Divergent. 7.26. Convergent. 7.27. Convergent.
7.28. Convergent. 7.29. Convergent. 7.30. Convergent. 7.31. Divergent.
7.32. Divergent. 7.33. Convergent. 7.34. Divergent. 7.35. Convergent.
7.36. Convergent. 7.37. Divergent. 7.38. Convergent. 7.39. Convergent. 7.40. All
of these series may be either convergent or divergent. 7.41. No. 7.43. Converges
absolutely. 7.44. Converges absolutely. 7.45. Converges absolutely. 7.46. Divergent.
7.47. Converges conditionally. 7.48. Converges absolutely. 7.49. Converges
absolutely. 7.50. Converges conditionally. 7.51. Converges absolutely.
7.52. Converges absolutely. 7.53. Converges absolutely. 7.54. Converges absolutely.
7.55. Converges conditionally. 7.56. Расходится. 7.57. Converges absolutely.
7.58. Converges absolutely. 7.59. Converges conditionally. 7.60. Converges
absolutely. 7.61. Converges conditionally. 7.63. (−1,1) . 7.64. (−1/3,1/3) .
7.65. [−9,−7] . 7.66. [−2,2) . 7.67. [−1,1] . 7.68. [−1,1] . 7.69. [−6,−2) .
7.70. [2,4] . 7.71. [−5,3) . 7.72. [−1,1) . 7.73. [1,3] . 7.74. [−3,−1] . 7.75. (4,6] .
7.76. (−4,4) . 7.77. (−3,3) . 7.78. (−6,−4) . 7.79. (−9,9] . 7.80. [−.5, .5] .
7.81. (−∞,∞) . 7.82. (−1,1) .

Chapter 8.

8.1. 3(x−1)3 +11(x−1)2 +14(x−1)+6 . 8.2. 2−2(x−1)+2(x−1)2−2(x−1)3 .

8.3. 1− x2 + 1
2!x

4− 1
3!x

6 + . . .+ (−1)n

n! x2n + . . . .
8.4. 1

2x− 1
23·3!x

3 + . . .+ (−1)n+1 1
22n−1(2n−1)!x

2n−1 + . . . .

8.5. 1− x2 + 23

4! x4 + . . .+ (−1)n 22n−1

(2n)! x2n + . . . .

8.6. − 2
3!x

3 + 4
5!x

5− . . .+ (−1)n 2n
(2n+1)!x

2n+1 + . . . .

8.7. ln10+ 1
10(x− 10)− 1

2·102 (x− 10)2 + . . .+(−1)n+1 1
n·10n (x− 10)n + . . . .

8.8. (x− 1)2− 1
2(x− 1)3 + . . .+(−1)n+1 1

n(x− 1)n+1 + . . . .

8.9. 1+ 1
2x2− 1

2·4x4 + . . .+(−1)n+1 1·3·...·(2n−3)
2·4·...·(2n−2)·2nx2n + . . . .

8.10. 2− 21
3

( x
2

)3− 2 2
32·2!

( x
2

)6− . . .− 22·5·...·(3n−4)
3n·n!

( x
2

)3n− . . . .

8.11. 1− 1
3!x

2 + 1
5!x

4− . . .+ (−1)n+1 1
(2n−1)!x

2n−2 + . . . .

8.12. 1+ 1
3!x

6+ 1
5!x

12+ . . .+ 1
(2n−1)!x

6(n−1)+ . . . . 8.13. ln2+ 1
2x+ 1

8x2− 1
192x4+ . . . .

8.14. 1− 1
2x2 + 1

2x3− 5
12x4 + . . . . 8.15. e

(
1− 1

2x2 + 1
6x4 + . . .

)
.
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8.16. 1− n
2x2+ 3n2−2n

24 x4+ . . . . 8.17. 1
2x2+ 1

12x4+ . . . . 8.18. 1+x2− 1
2x3+ 5

6x4+ . . . .
8.19. x3/6 . 8.20. x4/4 . 8.21. 8x3/3 . 8.22. x2 . 8.23. x4/8 . 8.24. 4x3 .
8.25. x7/30 . 8.26. x6/12 .

Chapter 9.

9.1. 1
5x5 +C . 9.2.

√
x+C . 9.3. 5

4x4 +2x3− 3
2x2 + x+C .

9.4. 300
65 x0.65 +C . 9.5. 1

32x4 + 1
4x3 + 3

4x2 + x+C . 9.6. 2
x +C .

9.7. 5x

ln5 +C . 9.8. 3
14x14/3 + 3

2x8/3 +6x2/3 +C . 9.9. 1
2
√

6
ln x−

√
1.5

x+
√

1.5
+C .

9.10. 1
2x2 + 12

7 x7/6 +3x1/3 +C . 9.11. 2x+4ln |x|+C .

9.12. x−2tan−1 x
2
+C . 9.13. x2

6 − 1
3x+C . 9.14. x4

4 − x2

2 + tan−1 x+C .

9.15. 2
5x5/2− x2 + 8

3x3/2−8x+C . 9.16. x−sinx
2 +C . 9.17. x+sinx

2 +C .
9.18. −2cosx+C . 9.19. tanx− x+C . 9.20. −cotx− x+C .
9.21. tanx+C . 9.22. −cotx+C . 9.23. −5−x

ln5 +
1

ln 3
5

(3
5

)x
+C . 9.24. π

2 x+C .

9.25. π

2 x+C . 9.26. −2e1−√x +C . 9.27. −1
2

√
2x+1+ 1

6

√
(2x+1)3 +C .

9.28. ex2+x +C . 9.29. ln(x2 +3x+10)+C . 9.30. ln |x3− x2−5x+7|+C .
9.31. 2

7(x−1)7/2 + 6
5(x−1)5/2 +2(x−1)3/2 +2(x−1)1/2 +C .

9.32. 1
2x− 3

4 ln |2x+3|+C . 9.33. − 11
x−2 +4ln |x−2|+C . 9.34. 1

5 cos5 x− 1
3 cos3 x+C .

9.35. tanx+C . 9.36. − 1
ln22cosx +C . 9.37. 1

24 ln
∣∣4+3x

4−3x

∣∣+C . 9.38. ln
∣∣∣
√

x+1−1√
x+1+1

∣∣∣+C .

9.39. −1
2 cot(x2−1)+C . 9.40. 2

√
tanx+C . 9.41. 3tanx− 1

2cos2 x +C .

9.42. − 1
2(sin−1 x)2 +C . 9.43. 1

2 tan−1(1
2ex)+C . 9.44. 1

4 sin−1(x4)+C .

9.45. −(6+ x2

3 )
√

9− x2 +C . 9.46. ln |x2−4x+10|+C .
9.47. cos

(1
x +5

)
+C . 9.48. −1

5ln5 x
+C . 9.49. −1

6 cos6(2x)+C .

9.50. 1
10ln335x2+4 +C . 9.51. −2

5

√
cos−1 5x+C . 9.52. (tan−1 x)3/3+C .

9.53. 3
2 ln(x2 +9)− 1

3 tan−1( x
3)+C . 9.54. 2

√
x−2+

√
2tan−1

√
x−2

2 +C .

9.55. −2
√

1− x2− 2
3(sin−1 x)3/2 +C . 9.56. 1

ln33tanx +C .
9.57. 2

√
x−3 3

√
x+6 6

√
x−6ln( 6

√
x+1)+C . 9.58. x−4

√
x+8ln(

√
x+2)+C .

9.59.
4
5

4√x5− x+
4
3

4√x3−2
√

x+4 4
√

x−4ln( 4
√

x+1)+C . 9.60. sinx− xcosx+C .

9.61. x2 sinx−2sinx+2xcosx+C . 9.62. −1
2x2 cos(2x)+ 1

4 cos(2x)+ 1
2xsin(2x)+C .

9.63. −(x+1)e−x +C . 9.64. (x2−2x+2)ex +C .
9.65. −1

3x2e−3x− 2
9xe−3x− 2

27e−3x +C . 9.66. −xcotx+ ln |sinx|+C .
9.67. − lnx

2x2 − 1
4x2 +C . 9.68. x(lnx−1)+C . 9.69. xcos−1 3x− 1

3

√
1−9x2 +C .

9.70. 1
2(x
√

1− x2 + sin−1 x)+C . 9.71. x
2

√
x2 +4+2ln

∣∣∣x+
√

x2 +4
∣∣∣+C .

9.72. x3

9 (3ln(2x)−1)+C . 9.73. (x+1)2

4 (2ln(x+1)−1)+C .

9.74. x
8(x2+4) +

1
16 tan−1 x

2 +C . 9.75. x2

4

√
1− x4 + 1

4 sin−1(x2)+C .

9.76. 3−x

ln3 3
(−x2 ln2 3+ x ln2 3−2x ln3+ ln3−2)+C .

9.77. x(tan−1 x− cot−1 x)− ln(1+ x2)+C .
9.78. ln(x2 + x+1)(x+ 1

2)−2x+
√

3tan−1 2x+1√
3
+C .

9.79. x tan−1(x2)−
√

2
4 ln x2−

√
2x+1

x2+
√

2x+1
−
√

2
2 (tan−1(

√
2x+1)− tan−1(

√
2x−1))+C .
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9.80. ln |x−5|− ln |x−4|+C . 9.81. 15ln |x−5|−13ln |x−4|+C .
9.82. x+21ln |x−5|−13ln |x−4|+C .
9.83. x2

2 +9x+125ln |x−5|−64ln |x−4|+C .
9.84. x3 + x2−5x+18ln |x+3|+C . 9.85. 6x+2ln |2x−1|−5ln |x+1|+C .
9.86. 13

15 ln |x−1|− 2
3 ln |x+2|− 1

5 ln |x+4|+C . 9.87. 11
x+3 +3ln |x+3|+C .

9.88. x−3ln |x+2|+C . 9.89. − 1
2(x−1) +

1
4 ln
∣∣x+1

x−1

∣∣+C .

9.90. − 1
x+2 − 1

x+3 +2ln
∣∣x+3

x+2

∣∣+C . 9.91. − 16
x−2 − 2

3 ln |x−2|+ 5
3 ln |x+1|+C .

9.92. x+3ln |x−1|+C . 9.93. ln |x−1|− 1
2 ln(x2 +1)+ tan−1 x+C .

9.94. 3
2 tan−1 x+1

2 +C . 9.95. 4ln |x+2|− 3
2 ln(x2 +2x+2)+ tan−1(x+1)+C .

9.96. 1
10 ln x2+4

x2+9 +
3
2 tan−1 x

2 − tan−1 x
3 +C . 9.97. 1

2 ln(x2 +1)− ln |x+1|− 3
x+1 +C .

Chapter 10.

10.5. 5 and 7 . 10.6. y0 < −1 . 10.7. x

y

1 2−1−2

1

2

−1

−2�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

. 10.8. The

solutions have inflection points; lim
x→∞

y(x) = ∞ and lim
x→−∞

y(x) = −∞ .

10.9. a) −2 < y0 < 0 and y0 > 2 ; b) y0 <−2 and 0 < y0 < 2 ; c) −2≤ y0 ≤ 2 ;

d) lim
x→∞

y(x) =





−∞, y0 <−2;
−2, y0 =−2;
0, −2 < y0 < 2;
2, y0 = 2;
∞, y0 > 2.

. 10.10. y = x2

2 +C . 10.11. y3 = x3

3 +C .

10.12. y2 = x
Cx+2 . 10.13. y3/2 = 3

2
√

x+C . 10.14. y2 = 4x3/2 +C .

10.15. y =Ce2tan−1 x− 1
2 . 10.16. tany = 1

2 ln(1+ x2)+C , y = π

2 +πn , n ∈ N .
10.17. y = 2

ln |x+2|+C , y = 0 . 10.18. y−x
xy + ln |xy|=C , y = 0 . 10.19. y =Cx2e−3/x .

10.20. 2
√

y− tan−1 x =C , y = 0 . 10.21. sin−1 y+
√

1− x2 =C , y =±1 .
10.22. y = 2x . 10.23. y2 = x2 +8 . 10.24. y = e5−2x . 10.25. y = 3

√
3x−3x2 +19 .

10.26. y = 2ln |x|+ x2+5
2 . 10.27. y = e

√
x−2 . 10.28. y = (x(lnx−1)+1)2 .

10.29. tan−1 y = tan−1 ex− π

4 . 10.30. lny =
√

1−cosx
1+cosx . 10.31. y(x) = π/2 .

10.32. y = cos−1
(√

2
2 cosx

)
. 10.33. D = 4

πt+4 . 10.34. x = t2 + t3 +4 . 10.35. 11314.
10.36. ≈ 5.68 hours. 10.37. ≈ 11.7 days; ≈ 2263 grams. 10.38. a) Q = 1000/P ;
b) Q = P2−5P+450 . 10.39. ≈ 4.2% . 10.40. ≈ 1845 years ago.
10.41. ≈ 36 . 10.42. 1.35 hours. 10.43. ≈ 2.096 hours. 10.44. ≈ 2.954 hours.
10.45. 4.5 hours. 10.46. 12.375 hours. 10.47. ln0.25/ ln0.75 ; ≈ 20.53 grams.
10.48. a) 90000e2−40000≈ $625000 ; b) (90000e2−40000)e/20(e−1)≈ $49400 .
10.49. y = x ln |x|+Cx . 10.50. y = Cx2−5x . 10.51. y2 = 2x2 (C− ln |x|) .
10.52. (x−y)(ln |x|+C) = 2x or y = x . 10.53. (y+2x)3 =C(y+x)2 or y =−x or
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y =−2x . 10.54. − x2

2y2 + ln |y|=C or y = 0 . 10.55. ln(x2+y2)+2tan−1 y
x +C = 0 .

10.56. sin−1 (2 y
x

)
= C− 2ln |x| , x > 0 ; sin−1 (2 y

x

)
= C+ 2ln |x| , x < 0 ;

y =±1
2x . 10.57. y = 1+Ce−x2/2 . 10.58. y = 1

3x2 + C
x . 10.59. y = x3− x+ C

x2 .

10.60. y = 1
3ex +Ce−2x . 10.61. y = 1

4x2− 1
3x+ 1

2 +
C
x2 . 10.62. y = x−1+C

√
x .

10.63. y =−24
37 cos3x− 4

37 sin3x+Cex/2 . 10.64. y = (sinx+C)cosx .
10.65. y = x+(1+ x2) tan−1 x+C(1+ x2) . 10.66. y = 1

cosx +
C

sinx .
10.67. y =−1

2 cosxcos2x− sinx+C cosx .

Chapter 11.

11.1.
1∫
0

√
xdx . 11.2. 4 . 11.3. −7.5 . 11.4. 1

a − 1
b . 11.5. e−1 . 11.6. ln2 . 11.7. 1.

11.8. a) 2.75; b) 5.75; c) 3.875. 11.9. 4.25. 11.10. π ≈ 3.148 . 11.11. a) ≈ 5.556 ;
b) ≈ 5.249 ; c) ≈ 5.403 ; d) ≈ 5.403 . 11.12. 12. 11.13. 13100 ft2 . 11.14. 19.
11.15. 2

√
e . 11.16. − ln7

8 . 11.17. ln
√

5
2 . 11.18. −7/200 . 11.19. 2

√
3− 4

3

√
2 .

11.20. 9 3
√

3−3 . 11.21. −
√

2 . 11.22. π/6 . 11.23. 1−
√

3
2 . 11.24. π

12 −
√

3
8 .

11.25. 2
3 − 3

√
3

8 . 11.26. π

16 − 7
√

3
64 . 11.27. 1192

45 . 11.28. (e2+1)4

8 −2 .
11.29. 2+2ln3−4ln2 . 11.30. − ln(

√
10−3)− ln(

√
2−1) . 11.31.

√
5/3 .

11.32. π−2
8 . 11.33.

√
3

4 − 7
36 . 11.34.

ln(7/3)
32 . 11.35. π . 11.36.

√
3

3 π− ln2 .

11.37. π

1+π2

(
1+ π√

e

)
. 11.38. 20ln2−3 . 11.39. 1

4 +
π

24 −
√

3
8 . 11.40. 5

√
3π

72 − ln3
8 .

11.41. 5−6ln2 . 11.42.
2
√

3−1
12

π−
√

3−1
2 . 11.43. ln5

4 − 1
4 ln(4+ 1

e2 )+
3
2 .

11.44. 4
√

3−π

3 . 11.46. a) 5/4 ; b) 27; c) a = 5/4 , b =−5/4 . 11.47. 4
√

2−2
3 .

11.48. ln2/2 . 11.49.
√

3/4 . 11.50. 2
√

3− 2π

3 . 11.51. 4/e . 11.52. The integral is
positive. 11.54. 1 . 11.55. 1/2 . 11.56. sin1/e . 11.57. 1 . 11.58. 6. 11.59. 27/2 .
11.60. 68/3 . 11.61. e3−1/e3 . 11.62. 6. 11.63. 208/3 . 11.64. 3/2 .
11.65. 1/4+2ln2 . 11.66. ln3 . 11.67. 8π−2

√
3 . 11.68. 2−π/2 . 11.69. 32/3 .

11.70. 2−
√

2 . 11.71. 125/6 . 11.72. 5ln5−4 . 11.73. e+ 1
e −2 . 11.74.

√
2−1 .

11.75. ln2/2 . 11.76.
√

3π/3− ln2 . 11.77. (e2 +3e−2)/4 . 11.78. a) 1+
√

3
2 ;

b) cos−1
√

3−1
4 . 11.79. 316π/3 . 11.80. 56π/27 . 11.81. 32π/3 . 11.82. 208π/15 .

11.83. 64π/5 . 11.84. a) 48π

5 ; b) 24π

5 . 11.85. 3π/10 . 11.86. a) π/30 ; b) π/6 ;
c) π/2 ; d) 5π/6 ; e) 11π/30 ; f) 19π/30 . 11.87. 2

√
3π . 11.88. a) π/2 ;

b) 32π/15 . 11.89. 2π/3 . 11.90. e−2 . 11.91. 9/2 . 11.92. 4
√

3/3 . 11.93. 512/3 .
11.94. 5; 13. 11.95. 40 meters; 41 meters. 11.96. 20 meters. 11.97. 5 m/sec2 ;
3 kilometers. 11.98. a) v(k, t) = 37/(37kt +1) ; b) 1

372
1
ft ; c) 296/29≈ 10.207 sec;

d) 1369ln 37
29 ≈ 333.519 ft. 11.99. x(t) = t3− t2 +4t +6 . 11.100. ≈ 1.478 .

11.101. 245/4 meters; 35 m
sec . 11.102. 30+10

√
11≈ 63.2 seconds.

Chapter 12.

12.1. 20 . 12.2. 5(24/5−1)/4 . 12.3. Divergent. 12.4. π . 12.5. π/4 . 12.6. π/2 .
12.7. 6 . 12.8. ln4 . 12.9. Divergent. 12.10. 3 . 12.11. Divergent. 12.12. −4/9 .
12.13. π . 12.14. Divergent. 12.15. Divergent. 12.16. Divergent. 12.17. 1/4 .
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12.18. 1/50 . 12.19. e5/5 . 12.20. 1/144 . 12.21. Divergent. 12.22. π/10 .
12.23. 1

3 ln 9+e−9

9 . 12.24. 3
√

9 . 12.25. Divergent. 12.26. e−45/9 . 12.27. Divergent.
12.28. 1/2 . 12.29. 5e4/4 . 12.30. (π− ln4)/4 . 12.31. π/6

√
3 . 12.32. π/4 .

12.33.
√

π/2 . 12.34.
√

2π . 12.36. Divergent. 12.37. Convergent. 12.38. Divergent.
12.39. Convergent. 12.40. Convergent. 12.41. Divergent. 12.42. Convergent.
12.43. Divergent. 12.44. Convergent. 12.45. Convergent. 12.46. Divergent.
12.47. Convergent. 12.48. Convergent. 12.49. Convergent. 12.50. Divergent.
12.51. Convergent. 12.52. Divergent. 12.53. Convergent. 12.54. Convergent.
12.55. Divergent. 12.56. Convergent. 12.57. Divergent. 12.58. Convergent.
12.59. Divergent. 12.60. Convergent. 12.61. Convergent. 12.62. Divergent.
12.63. Convergent. 12.64. Convergent. 12.65. All of these integrals may be either
convergent or divergent. 12.66. i) Divergent; ii) Could be either convergent or
divergent; iii) Diverges; iv) Could be either convergent or divergent. 12.67.No.

Chapter 13.

13.1.
{
(x,y) : 0≤ x≤ 4,0≤ y≤ x

2

}
or {(x,y) : 0≤ y≤ 2,2y≤ x≤ 4} .

13.2. {(x,y) : 0≤ x≤ 1,x≤ y≤ 2− x} or
{(x,y) : 0≤ y≤ 1,0≤ x≤ y}⋃{(x,y) : 1≤ y≤ 2,0≤ x≤ 2− y} .
13.3.

{
(x,y) :−2≤ x≤ 2,0≤ y≤

√
4− x2

}
or{

(x,y) : 0≤ y≤ 2,−
√

4− y2 ≤ x≤
√

4− y2
}
.

13.4. {(x,y) :−3≤ x≤ 0,0≤ y≤ 2x+6} or
{
(x,y) : 0≤ y≤ 6, y

2 −3≤ x≤ 0
}
.

13.5.
{
(x,y) :−4≤ x≤−3,x+4≤ y≤

√
x+4

}
or

{
(x,y) : 0≤ y≤ 1,y2−4≤ x≤ y−4

}
. 13.6.

{
(x,y) : 0≤ x≤ 4,0≤ y≤

√
4− x2

4

}

or
{
(x,y) : 0≤ y≤ 2,0≤ x≤

√
16−4y2

}
.

13.7.
{
(x,y) :−2≤ x≤ 1,−2

3x+ 5
3 ≤ y≤ x

5 +
17
5

}⋃{
(x,y) : 1≤ x≤ 3, 3

2x− 1
2 ≤ y≤ x

5 +
17
5

}

or{
(x,y) : 1≤ y≤ 3,−3

2y+ 5
2 ≤ x≤ 2

3y+ 1
3

}⋃{
(x,y) : 3≤ y≤ 4,5y−17≤ x≤ 2

3y+ 1
3

}
.

13.8.
{
(x,y) : 1≤ x≤ 3, 3

x ≤ y≤ 4− x
}

or
{
(x,y) : 1≤ y≤ 3, 3

y ≤ x≤ 4− y
}
.

13.9.
{
(x,y) : 0≤ x≤ π

4 ,sinx≤ y≤ cosx
}

or{
(x,y) : 0≤ y≤

√
2

2 ,0≤ x≤ sin−1 y
}⋃{

(x,y) :
√

2
2 ≤ y≤ 1,0≤ x≤ cos−1 y

}
.

13.10.
{
(x,y) : 1

e ≤ x≤ 1, lnx≤ y≤ 0
}⋃{(x,y) : 1≤ x≤ e,0≤ y≤ lnx}

or
{
(x,y) :−1≤ y≤ 0, 1

e ≤ x≤ ey}⋃{(x,y) : 0≤ y≤ 1,ey ≤ x≤ e} .

13.11.

y

x

1

1−1

−1

�

�

�

�

0

1

. 13.12.

y

x

(1,1)

−1

(1,−1)

�

�

�

�

0

1

. 13.13.

y

x

4

−2

−4

20

1

.
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13.14.

y

x

4

−1

−4

10

1

. 13.15.

y

x
−3 30

1

. 13.16.

y

x

(−1,−1)

(1,1)

0

�

�

1

.

13.17.

1∫

0

dy
1∫

y

f (x,y)dx . 13.18.
2∫

0

dx
2x∫

0

f (x,y)dy . 13.19.
3∫

1

dy
2∫

(y+1)/2

f (x,y)dx .

13.20.

ln2∫

0

dy
2∫

ey

f (x,y)dx . 13.21.
25∫

5

dy
6∫

30/y

f (x,y)dx+
30∫

25

dy

31−y∫

30/y

f (x,y)dx .

13.22.

1∫

0

dx
1∫

1−x

f (x,y)dy +
2∫

1

dx
1∫

x−1

f (x,y)dy .

13.23.

1/2∫

−1

dy
1∫

−y

f (x,y)dx+
2∫

1/2

dy
1∫

y−1

f (x,y)dx−
1/2∫

0

dy

y−1∫

−1

f (x,y)dx−
1∫

1/2

dy

−y∫

−1

f (x,y)dx .

13.24. 3/8 . 13.25. 4/3 . 13.26. 3
4e4− 1

4e2 . 13.27. 1
2e4−2e . 13.28. 55/156.

13.29. -935/3. 13.30. 1
12

(
e729−1

)
. 13.31. 1

6

(
173/2−1

)
.
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