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CHAPTER 14

Multiple
Integration

Introduction 1n this chapter we extend the concept of the definite integral to
functions of several variables. Defined as limits of Riemann sums, like the one-
dimensional definite integral, such multiple integrals can be evaluated using suc-
cessive single definite integrals. They are used to represent and calculate quantities
specified in terms of densities in regions of the plane or spaces of higher dimension.
In the simplest instance, the volume of a three-dimensional region is given by a
double integral of its height over the two-dimensional plane region that is its base.

Figure 14.1 A solid region § lying
above domain D in the .xy-plane and
below the surface z = f(x, y)

The definition of the definite integral, fa b f(x) dx,is motivated by the standard area
problem, namely, the problem of finding the area of the plane region bounded by
the curve y = f(x), the x-axis, and the lines x = g and x = b. Similarly, we can
motivate the double integral of a function of two variables over a domain D in the
plane by means of the standard volume problem of finding the volume of the three-
dimensional region S bounded by the surface z = f(x, y), the xy-plane, and the
cylinder parallel to the z-axis passing through the boundary of D. (See Figure 14.1.
D is called the domain of integration.) We will call such a three-dimensional
region S a “solid,” although we are not implying that it is filled with any particular
substance. We will define the double integral of f(x, y) over the domain D,

f/ fx,y)dA,
D

in such a way that its value will give the volume of the solid S whenever D is a
“reasonable” domain and f is a “reasonable” function with positive values.

Let us start with the case where D is a closed rectangle with sides parallel to the
coordinate axes in the xy-plane, and f is a bounded function on D. If D consists
of the points (x, y) such thata < x < band ¢ < y < d, we can form a partition
P of D into small rectangles by partitioning each of the intervals [a, b] and [c, d],
say by points

Aa=X)<X] <X < - <Xpo] <Xm=2b,

C=y<yI<Y2<--<y_1 <V,=d.

The partition P of D then consists of the mn rectangles R;; (1 <7 <m, 1 < j < n),
consisting of points (x, y) for which x;_; < x < x;and y; ;1 <y < y;. (See
Figure 14.2.)
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Figure 14.2 A partition of D (the
large shaded rectangle) into smaller
reclangles R;; (1 <i <m, 1 < j <n)

The rectangle R;; has area
AAj; = AxiAy; = (x; — x;—1) (Y — ¥j-1)
and diameter (i.e., diagonal length)
diam(Riy) =/ (Ax)? + (Ay)* = /0 — 30 4 (0 =y

The norm of the partition P is the largest of these subrectangle diameters:

P = max diam(R;;).

Isjsn

Now we pick an arbitrary point (x5, ¥i;) in each of the rectangles R;; and form the
Riemann sum

R(f,P) =) > Fx. vi) AAyj,

i=1 j=1

7= f(x,y)

Figure 14.3 A rectangular box
above rectangle R;;. The Riemann sum
is a sum of volumes of such boxes x
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which is the sum of mn terms, one for each rectangle in the partition. (Here, the
double summation indicates the sum as i goes from 1 to m of terms, each of which
is itself a sum as j goes from 1 to n.) The term corresponding to rectangle R;; is,
if f (x;“j, y;“j) > 0, the volume of the rectangular box whose base is R;; and whose
height is the value of f at (x7, y/;). (See Figure 14.3.) Therefore, for positive
functions f, the Riemann sum R(f, P) approximates the volume above D and
under the graph of f. The double integral of f over D is defined to be the limit of
such Riemann sums, provided the limit exists as || P|| — O independently of how

the points (x;;, y;) are chosen. We make this precise in the following definition.

The double integral over a rectangle
We say that f is integrable over the rectangle D and has double integral

/= f/ Flx.y)dA.,
D

if for every positive number ¢ there exists a number § depending on €, such
that

IR(f, P)— 1] <€

holds for every partition P of D satisfying || P|| < § and for all choices of the

points (x;;, ;) in the subrectangles of P.

The “d A” that appears in the expression for the double integral is an area element.
It represents the limit of the AA = Ax Ay in the Riemann sum and can also be
written dx dy or dy dx, the order being unimportant. When we evaluate double
integrals by iteration in the next section, dA will be replaced with a product of
differentials dx and dy, and the order will be important,

As is true for functions of one variable, functions that are continuous on D are
integrable on D. Of course, many bounded but discontinuous functions are also
integrable, but an exact description of the class of integrable functions is beyond
the scope of this text.

Y =N Let D be the square 0 < x < 1,0 < y < 1. Use a Riemann sum
corresponding to the partition of D into four smaller squares with points selected at
the centre of each to find an approximate value for

05— // (x> +y)dA.
D

0.5 1 *| Solution The required partition P is formed by the lines x = 1/2 and y =
1/2, which divide D into four squares, each of area AA = 1/4. The centres of
Figure 14.4  The partitioned square | these squares are the points (3, ), (3. 3), (2, 1), and (3, 3). (See Figure 14.4.)
of Example 1 Therefore, the required approximation is
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Double Integrals

Double Integrals over More General Domains

It is often necessary to use double integrals of bounded functions f(x, y) over
domains that are not rectangles. If the domain D is bounded, we can choose a
rectangle R with sides parallel to the coordinate axes such that D is contained
inside R. (See Figure 14.5.) If f(x, y) is defined on D, we can extend its domain
to be R by defining f(x, y) = O for points in R that are outside of D. The integral
of f over D can then be defined to be the integral of the extended function over the
rectangle R.

If f(x,y) is defined and bounded on domain D, let f be the extension of f
that is zero everywhere outside D:

fx,y),

f(x y) = { if (x, y) belongs to D
) - O,

if (x, y) does not belong to D.
If D is a bounded domain, then it is contained in some rectangle R with sides

parallel to the coordinate axes. We say that f is integrable over D and define
the double integral of f over D to be

// f(x,y>dA=ff Fx, y)da,
D R

provided that f is integrable over R.

This definition makes sense because the values of f in the part of R outside of D are
all zero, so do not contribute anything to the value of the integral. However, even if
f is continuous on D, f will not be continuous on R unless f(x, y) — Oas (x, y)
approaches the boundary of D. Nevertheless, if f and D are “well-behaved,” the
integral will exist. We cannot delve too deeply into what constitutes well-behaved,
but assert, without proof, the following theorem that will assure us that most of the
double integrals we encounter do, in fact, exist.

If f is continuous on a closed, bounded domain D whose boundary consists of
finitely many curves of finite length, then f is integrable on D.

According to Theorem 2 of Section 13.1, a continuous function is bounded if its
domain is closed and bounded. Generally, however, it is not necessary to restrict
our domains to be closed. If D is a bounded domain and int(D) is its interior (an
open set), and if f is integrable on D, then

// f(x,y)dAsz flx,y)dA.
D nt(n)
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We will discuss improper double integrals of unbounded functions or over un-
bounded domains in Section 14.3.

Properties of the Double Integral

Some properties of double integrals are analogous to properties of the one-dimen-
sional definite integral and require little comment: if f and g are integrable over
D, and if L and M are constants, then

(a) [f f(x;y)dA = 0if D has zero area.
D

(b) Area of a domain: 1dA = areaof D (because it is the vol-
ume of a-cylinder with b:fse D and height 1).

(c) Integrals representing volumes:
If f(x,y)>0onD,then f{x,y)dA =V = 0, where V is the
volume of the solid lying verlt)ically above D and below the surface
z=fxy).

@ If f(x,y) <O0on D, then [/ fx,y)dA = -V < 0, where V is

D
the volume of the solid lying vertically below D and above the surface
2= fxy)

(e) Linear dependence on the integrand:

J[(wrwyrmsan)aa=[[ sondacm [[ g nan
D D D

(f) Inequalities are preserved:

If f(x,y)<g(x,y)on D,then// fx,y)dA < // glx,y)dA.
D D

< ffD /G )l dA.

(h) Additivity of domains: If D;, D,, ..., D; are nonoverlapping
domains on each of which f is integrable, then f is integrable over
the union D =D, U D, U---U D and

k
f/ f(x,y>dA=Zf Fx, ) dA.
b j=17D;

(g) The triangle inequality: l / fx,y)dA
D

Nonoverlapping domains can share boundary points but have no interior points in
common.

Double Integrals by Inspection

As yet, we have not said anything about how to evaluate a double integral. The
main technique for doing this, called iteration, will be developed in the next section,
but it is worth pointing out that double integrals can sometimes be evaluated using
symmetry arguments or by interpreting them as volumes that we already know.
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Figure 14.6

Figure 14.7

| Exercises 14.1
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If Ris therectanglea < x < b,c <y <d, then
f/ 3dA =3 xareaof R =3(b—a)(d — c).
R
Here, the integrand is f(x, y) = 3 and the integral is equal to the volume of the

solid box of height 3 whose base is the rectangle R. (See Figure 14.6.)
||

boox m Evaluate I = /f (sinx 4+ y® +3)dA.
X

2+y2§1

Solution The integral can be expressed as the sum of three integrals by property
(e) of double integrals:

1=// sindi+f/ y3dA+f/ 3dA
x24y2<1 x24y2<1 x24y2<i

:Il+12+13'

The domain of integration (Figure 14.7) is a circular disk of radius 1 centred at the
origin. Since f(x,y) = sinx is an odd function of x, its graph bounds as much
volume below the xy-plane in the region x < 0 as it does above the xy-plane in
the region x > 0. These two contributions to the double integral cancel, so /; = 0.
Note that symmetry of both the domain and the integrand is necessary for this
argument.

Similarly, I, = 0 because y* is an odd function and D is symmetric about the
x-axis.

Finally,
I3=// 3dA =3 x areaof D = 3m.
D

Thus I =0+ 0+ 37 = 3.

12 EINTIEE I D is the disk of Example 3, the integral

// JI= = yda

represents the volume of a hemisphere of radius 1 and so has the value 27/3.
_=u

When evaluating double integrals, always be alert for situations such as those in
the above examples. You can save much time by not trying to calculate an integral
whose value should be obvious without calculation.

Exercises 1-6 refer to the double integral

1://(5—x7y)dA,
D

In Exercises 1-5, calculate the Riemann sums for /
corresponding to the given choices of points (x;"j, yl.*j).
1. (x;"j, y;*j) is the upper-left corner of each square.

* K

where D is the rectangle 0 < x <3,0 <y < 2. Pisthe 2. (X,j’ y,-j) is the upper-right corner of each square.
partition of D into six squares of side 1 as shown in Figure 14.8.
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where f(x, y) = 1 by calculating the Riemann sums R(f, P)
corresponding to the indicated choice of points in the small
squares. Hint: using symmetry will make the job easier.

7. (x;"j,
8. (xi*j, yl.*j) is the corner of each square farthest from the
origin.

o

¥;;) is the corner of each square closest to the origin.

9. (x;"j, yi*j) is the centre of each square.

10. Evaluate J.

11. Repeat Exercise 5 using the integrand ¢* instead of

| 5 3 e 5—x—y.
B 12. Repeat Exercise 9 using f(x, y) = x% + y? instead of
. fx,yy=1
Figure 14.8 In Exercises 13-22, evaluate the given double integral by
3. (,\‘fl-. ,\‘[T“j) is the lower-left corner of each square. inspection.
4. (.\'I.*j, y;*j) is the lower-right corner of each square. 13. / / d A, where R is the rectangle —1 < x < 3,
e . R

5. (.\I.*j, \\i*j) is the centre of each square. —4<y<l
6. Evaluate I by interpreting it as a volume.

y 14. // (x + 3)dA, where D is the half-disk
D

0<y<+/4—x2

15. f / (x + y)dA, where T is the parallelogram having the

5

T
points (2,2), (1, —1), (=2, —2), and (~1, 1) as vertices

16. // (x? cos(yh) +3siny — ) dA
[x]+lyl=<1

_5 B 17. f/ (4x%y® —x +5)dA
T Pyl

18. // a? —x2 —y2dA
x2yi<a?

19. /f (a—+/x24+yhHdA
x24y2<a?

-5 20. /f(x + y)dA, where S is the square 0 < x < g,
N
Figure 14.9 0<y<a
In Excreises 7-10, D is the disk x* + y* < 25 and P is the 21. // (1 —x — y)dA, where T is the triangle with vertices
partition of the square —5 < x <5, —5 < y < 5 into one T
hundred 1 x 1 squares, as shown in Figure 14.9. Approximate 0,0), (1,0), and (0, 1)
the double integral
22. f/ /b% — y2d A, where R is the rectangle
R
<<
J://f(x,y)dA. O<r=al=ysbh
D

Coordinates

The existence of the double integral [, p J(x,¥)dA depends on f and the domain
D. As we shall see, evaluation of double integrals is easiest when the domain of
integration is of simple type.
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¥ y
b(y)
y =c(x)
a b * X X
Figure 14.10 A y-simple domain Figure 14.11 An x-simple domain Figure 14.12 A regular domain

We say that the domain D in the xy-plane is y-simple if it is bounded by two
vertical lines x = g and x = b, and two continuous graphs y = c(x) and y = d(x)
between these lines. (See Figure 14.10.) Lines parallel to the y-axis intersect a
y-simple domain in an interval (possibly a single point) if at all. Similarly, D is
x-simple if it is bounded by horizontal lines y = ¢ and y = 4, and two continuous
graphs x = a(y) and x = b(y) between these lines. (See Figure 14.11.) Many of
the domains over which we will take integrals are y-simple, x-simple, or both. For
example, rectangles, triangles, and disks are both x-simple and y-simple. Those
domains that are neither one nor the other will usually be unions of finitely many
nonoverlapping subdomains that are both x-simple and y-simple. We will call such
domains regular. The shaded region in Figure 14.12is divided into four subregions,
each of which is both x-simple and y-simple.

It can be shown that a bounded, continuous function f(x, y) is integrable over
a bounded x-simple or y-simple domain and, therefore, over any regular domain.

Unlike the examples in the previous section, most double integrals cannot be
evaluated by inspection. We need a technique for evaluating double integrals similar
to the technique for evaluating single definite integrals in terms of antiderivatives.
Since the double integral represents a volume, we can evaluate it for simple domains
by a slicing technique.

Suppose, for instance, that D is y-simple and is bounded by x = a, x = b,
y = c¢(x), and y = d(x), as shown in Figure 14.13(a). Then ﬂz) flx,y)dA
represents the volume of the solid region inside the vertical cylinder through the
boundary of D and between the xy-plane and the surface z = f(x, y). Consider
the cross-section of this solid in the vertical plane perpendicular to the x-axis at
position x. Note that x is constant in that plane. If we use the projections of the
y- and z-axes onto the plane as coordinate axes there, the cross-section is a plane
region bounded by vertical lines y = c(x) and y = d(x), by the horizontal line
z = 0, and by the curve 7 = f(x,y). The area of the cross-section is therefore
given by

d(x)

Alx) = fx,y)dy.
c(x)

The double integral [, f(x, y)dA is obtained by summing the volumes of “thin”

slices of area A(x) and thickness dx between x = g and x = b and is therefore
given by

b b d(x)
/f f(x,y)dA:f A(x)dx::/ ( f(x,y)dy)dx.
D a a c(x)
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Figure 14.13
(a) Inintegrals over y-simple
domains, slices should be
perpendicular to the x-axis
(b) In integrals over x-simple
domains, slices should be
perpendicular to the y-axis

Notationally, it is common to omit the large parentheses and write

b pdo
f/ f(x,y>dA=f/ . y)dydx,
D a c{x)
or

b d(x)
// f(x,y)dA=/ ar [ gy
D a c(x

The latter form shows more clearly which variable corresponds to which limits of

integration.
z <

z=f(x,y)

y=d(x) x
(a) (b)

The expressions on the right-hand sides of the above formulas are called iterated
integrals. Iteratiom is the process of reducing the problem of evaluating a double
(or multiple) integral to one of evaluating two (or more) successive single definite
integrals. In the above iteration, the integral

dix)

fx,y)dy
c(x)
is called the inner integral since it must be evaluated first. It is evaluated using
standard techniques, treating x as a constant. The result of this evaluation is a
function of x alone (note that both the integrand and the limits of the inner integral
can depend on x) and is the integrand of the outer integral in which x is the variable
of integration.

For double integrals over x-simple domains we can slice perpendicularly to the
y-axis and obtain an iterated integral with the outer integral in the y direction. (See
Figure 14.13(b).) We summarize the above discussion in the following theorem
whose formal proof we will, however, not give.

Iteration of double integrals

If f(x, y) is continuous on the bounded y-simple domain D givenbya < x < b
and c(x) < y < d(x), then

: : b dix)
/]Df(x,y)dA =,f dxf() flx,y)dy.

Similarly, if f is continuous on the x-simple domain D given by ¢ < y < d and
a(y) < x < b(y), then




Figure 14.14 The horizontal line
through @ indicates iteration with the
inner integral in the x direction
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d b
f f(x,}’)dA‘—‘f dy f(x,y)dx.
D c

a(y)
®

Remark The symbol d A in the double integral is replaced in the iterated integrals
by the dx and the dy. Accordingly, d A is frequently written dx dy or dy dx even
in the double integral. The three expressions

ICIALCU UUCS UIC ULUCL UL UA AUU ¢ ) ULLULLIV LIPULLGIIL 1/RLWL 111 vaisn sassp ves -

will iterate double integrals in polar coordinates, and d A will take the form r dr d 9

It is not always necessary to make a three-dimensional sketch of the solid
volume represented by a double integral. In order to iterate the integral properly (in
one direction or the other) it is usually sufficient to make a sketch of the domain D
over which the integral is taken. The direction of iteration can be shown by a line
along which the inner integral is taken. The following examples illustrate this.

Find the volume of the solid lying above the square Q defined by
O<x<landl <y <2andbelowtheplanez =4 — x — y.

Solution The square Q is both x-simple and y-simple, so the double integral
giving the volume can be iterated in either direction. We will do it both ways just
for practice. The horizontal line at height y in Figure 14.14 suggests that we first
integrate with respect to x along this line (from O to 1) and then integrate the result
with respect to y from 1 to 2. Iterating the double integral in this direction, we
calculate

Volume above Q = /f 4—-—x—-y)dA
Q

2 1
=/1 dy/o 4—x—y)ydx
=/12dy(4x——§—xy)x:l
=[G

2,12
)

x=0

= 2 cubic units.

1
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Figure 14.15 The vertical line
through Q indicates iteration with the
inner integral in the y direction

4.0

- 1 >

Figure 14.16
T with vertical line indicating iteration
with inner integral in the y direction

The triangular domain

1D

1 X

Figure 14.17
T with horizontal line indicating

The triangular domain

iteration with inner integral in the x
direction

Using the opposite iteration, as suggested by Figure 14.15, we calculate

VolumeaboveQ:f/ @4—x-—y)dA
o
1 2
/ dx/(4—x—y)dy
0 1
1 2, |y=2
y
/de(4y—xy—?>
1
5
/0(§—x>dx

5c 0 x|
(5 -7,

y=1

= 2 cubic units.

It is comforting to get the same answer both ways! Note that because Q is a
rectangle with sides parallel to the coordinate axes, the limits of the inner integrals
do not depend on the variables of the outer integrals in either iteration. This cannot

be expected to happen with more general domains.

IEETYY Evaluate / / xy d A over the triangle T with vertices (0, 0), (1, 0),
T

and (1, 1).

Solution The triangle T is shown in Figure 14.16. It is both x-simple and y-
simple. Using the iteration corresponding to slicing in the direction shown in the

figure, we obtain:

0

1 2 pr=x
=f dx (2-)

0 2 /00
1.3 agl

1

=/ Tax=2| =,

) 8l, 8

Iteration in the other direction (Figure 14.17) leads to the same value:

1 1
//xydA:f dyfxydx
T 0 y
1 2 x=1
yx
dy(—-
Lot
1
Y 2
=—(1 - d
/2( y)dy

0

2 4
(7-%)

1
o 8




a, 1

Figure 14.18

corresponding to the iterated integral in

Example 3

The region
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In both of the examples above the double integral could be evaluated easily using
either possible iteration. (We did them both ways just to illustrate that fact.) It often
occurs, however, that a double integral is easily evaluated if iterated in one direction
and very difficult, or impossible, if iterated in the other direction. Sometimes
you will even encounter iterated integrals whose evaluation requires that they be
expressed as double integrals and then reiterated in the opposite direction.

1 I
m Evaluate the iterated integral I = / dx / ¥ dy.
0 Vx

Solution We cannot antidifferentiate ¥’ to evaluate the inner integral in this
iteration, so we express I as a double integral and identify the region over which it
is taken:

1:// e dA,
D

where D is the region shown in Figure 14.18. Reiterating with the x integration on
the inside we get

1 y? ,
I=/ dy/ e’ dx
0 0
1 N y2
=/ e’ dy/ dx
0 0

1 y?
= 2,9 gy = &
= e =

/Oy y 3

! e—1

0 3

The following is an example of the calculation of the volume of a somewhat
awkward solid. Even though it is not always necessary to sketch solids to find
their volumes, you are encouraged to sketch them whenever possible. When we
encounter triple integrals over three-dimensional regions later in this chapter it will
usually be necessary to sketch the regions. Get as much practice as you can.

S EINEEY  Sketch and find the volume of the solid bounded by the planes
y =0,z =0,and z = a — x + y and the parabolic cylinder y = a — (x?/a), where
a is a positive constant.

Solution The solid is shown in Figure 14.19. Its base is the parabolic segment D
in the xy-plane bounded by y = 0 and y = a — (x?/a), so the volume of the solid
is given by

V:f/(a—x+y)dA=//(a+y)dA.
D D

(Note how we used symmetry to drop the x term from the integrand. This term is
an odd function of x, and D is symmetric about the y-axis.) Iterating the double
integral in the direction suggested by the slice shown in the figure, we obtain
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Figure 14.19 The solid in
Example 4. sliced perpendicularly to
the x-axis

X
a a—(xz/a)
V= / dx f (a+y)dy
—a 0
a 2

= [(o+3)]
:/a[az—x2+%<a2—2x2+2—i)]dx

y=a—(x*/a)

dx

(3 ,  4x N x3 ) N
=(3ax - — + —
3 5a%/ |,
1 28
=3 ——a*+ 3 a® = == &® cubic units.

_ =

Remark Maple’s int routine can be nested to evaluate iterated double (or mul-
tiple) integrals symbolically. For instance, the iterated integral for the volume V
calculated in Example 4 above can be calculated via the Maple command

> V = int(int(a+y, v=0..a - x"2/a), xX=-a..a);
28
V="24
157

Recall that “int” has an inert form “Int,” which prints the integral without attempting

to evaluate it symbolically. For instance, we can print an equation for the reiterated

integral in the solution of Example 3 using the command

> Int(Int(exp(y™3),x=0..y"2),y=0..1)
=int(int(exp(y"3),x=0..vy"2),y=0.

Loy 11
/ / e(y3)dxdy=—e——
0o Jo 3 3

1)
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If you want Maple to approximate an iterated integral without first trying to evaluate
it symbolically, just ask it to “evalf” the inert form.

> evalf(Int(Int(exp(y™3),x=0..v"2),y=0..1));

5727606095

Of course, Maple can’t evaluate all integrals in symbolic form. If we replace
exp(y?) in the iterated integral above with exp(x?), Maple struggles valiantly with
the inner integral (of exp(x3) with respect to x and manages to express that in terms
of the gamma function and a related function of two variables called the incomplete
gamma function, but it fails to evaluate the outer (y) integral.

> Int(Int(exp(x™3),x=0..vy"2),y=0..1)

=int (int(exp(x"3),x=0..vy"2),y=0..1);

1 2
|yt 1 y? <—27r«/§+31" (5, —y6> r <§>>
/ f e("z)dxdy=/ d

0o Jo 0

’ (l)
2
r{Z) oo\’
( 3 ) o)
Again, we can force numerical approximation by using “evalf” on the inert form.

Y

> Int(Int(exp(x™3),x=0..y"2),v=0..1)
—evalf (Int (Int(exp(x"3),x=0..v"2),y=0..1)});

1 y2
/ / e dx dy = 3668032540
0 0

Always use the inert form when you want numerical approximation. Trying to use
“evalf” with “int(int(...” can produce unexpected results such as complex values for
integrals of functions that are real:

> evalf(int{(int(exp(x"3),x=0..v"2),y=0..1));
—.1834016270 — .3176609362 I

In Exercises 1-4, calculate the given iterated integrals. 8. // (x — 3y)dA, where T is the triangle with vertices
1 x 1 py (0,7(;), (a,0), and (0, b)
I ,[) ax ,/0 ey + Ay 2 _/(; /0 v+ y2) dxdy 9. // xy2 dA, where R is the finite region in the first
. 5 y quafirant bounded by the curves y = x% and x = y2
3. /0 /;x cosydydx 4. ‘/0 dy '/(; yzex'v dx 10. //D xcosydA, where D is the finite region in the first
In Exercises 5-14, evaluate the double integrals by iteration. quadrant b;)unded by the coordinate axes and the curve
y=1-x

5. // (x2 + yz) dA, where R is the rectangle 0 < x < a,
R

0<y=b

11. f/ Inx dA, where D is the finite region in the first

D
quadrant bounded by the line 2x 4+ 2y = 5 and the

6. / / x2y? d A, where R is the rectangle of Exercise 5 hyperbola xy =1
R

7. // (sinx + cos y) d A, where § is the square
s

0<x=<m/2,0<y<m/2

12. // Va? — y2dA, where T is the triangle with vertices
T

0, 0), (a, 0), and (a, a).
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A / / Xy dA, where R is the region 26. Above the triangle with vertices (0, 0), (a, 0), and (0, b) and
0V under the plane z = 2 — (x/a) — (y/b)
D<x<1,xr< y<x 27. Inside the two cylinders x> +y?=a’and y? + 72 = a?

. . : 2 2 _ . — vy —
14. Y g A, where T is the triangle with vertices (0, 0), 28. Inside the cylinder x” +2y” = 8, above the plane z = y — 4
oL+ x4 and below the plane z = 8 — x

(1.0),and (1, 1) # 29, Suppose that f(x, t) and f(x, t) are continuous on the
In Exercises 15-18, sketch the domain of integration and rectanglea <x < bandc <t <d. Let
evaluate the given iterated integrals.

d d
! ! /2 /2 g = x,0)dt and G(x):/ (x. 1) dt.
15./ dy/ e~ dx 16./ dy/ —Slz—xdx 80 _/C b . hi,
0 ¥ 0 y

' by Show that g’(x) = G(x) fora < x < b. Hint: evaluate
17. A dx . X2+ y2 dy (>0} fax G (1) du by reversing the order of iteration. Then

differentiate the result. This is a different version of

| 1/3
18 / i f Ay Theorem 5 of Section 13.5.
0 X

#30. Let F/(x) = f(x) and G'(x) = g(x) on the interval

In Exercises 19-28, find the volumes of the indicated solids. a < x < b. Let T be the triangle with vertices (a, a), (b. a),
19. Under - = 1 — x2 and above the region0 < x <1, and (b, b). By iterating ffT f(x)g(y)dA in both directions,

0<y=<x show that
20. Under ; = 1 — x* and above the region 0 < y < 1, b

0<x=y / f(x)G(x)dx
21, Underz =1 —x? — y2 and above the region x > 0, y > 0, a

b
x+y<l
) 2 2 = F(b)G(b) — F(a)G(a) —/ g F(y)dy.

22, Under ; = 1 — y~ and above 7 = x a

23. Under the surface z = 1/(x + y) and above the region in the ) . o
xv-plane bounded by x = 1, x =2,y =0,and y = x (This is an alternative derivation of the formula for

integration by parts.)

24. Under the surface z = x2 sin(y*) and above the triangle in ) o o
the xy-plane with vertices (0, 0), (0, = U4y and (x4, 7 1/4% 31. Use Maple’s int routine or similar routines in other
computer algebra systems to evaluate the iterated integrals
25. Above the xy-plane and under the surface in Exercises 1-4 or the iterated integrals you constructed in
z=1—x2=2y? the remaining exercises above.

To simplify matters, the definition of the double integral given in Section 14.1
required that the domain D be bounded and that the integrand f be bounded on D.
As in the single-variable case, improper double integrals can arise if either the
domain of integration is unbounded or the integrand is unbounded near any point
of the domain or its boundary.

Improper Integrals of Positive Functions

If f(x,y) = 0 on the domain D, then such an improper integral must either exist
(i.e., converge to a finite value) or be infinite (diverge to infinity). Convergence or
divergence of improper double integrals of such positive functions can be determined
by iterating them and determining the convergence or divergence of any single
improper integrals that result.




Figure 14.20 An unbounded sector
of the plane

Figure 14.21 The domain of the
integrand in Example 2
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Evaluate I = / / e_)‘2 dA. Here, R is the region where x > 0 and
R
—x <y < x. (See Figure 14.20.)

Solution We iterate with the outer integral in the x direction:

o0 X
I:/ dx/ e dy
0 —x
=/ e dx/ dy

0 —x
e 2
= 2/ xe ¥ dx.
0

This is an improper integral that can be expressed as a limit:

r

[=21lim | xe ™ dx
rF—o0 0

. 1 _.
=21lim | —=e™"
r—>00 2 0

= lim(l—e")=1.
r—>00

r

The given integral converges; its value is 1.

If D is the region lying above the x-axis, under the curve y = 1/x,
and to the right of the line x = 1, determine whether the double integral

1,555

converges or diverges.

Solution The region D is sketched in Figure 14.21. We have

1/x
/fx-Fy /1 f x+y
y=1/x
=/ In(x +y)
1 y=0

dx
:/loo <ln(x+)lc>—lnx> dx
1
:/len(x_:;>dx=/l 1n<1—+— )dx

It happens that this integral can be evaluated exactly (see Exercise 28 below),
but we are only asked to determine whether it converges, and that is more easily
accomplished by estimating it. Since 0 < In(1 + u) < u if u > 0, we have

O<ff / idx._l
x+y . x?

Therefore, the given integral converges, and its value lies between 0 and 1.
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V4

(1,1

Figure 14.22 The function

is unbounded on D

2]

1 . .
IES¥] Evaluate /f ———— dA, where D is the region 0 < x < 1,
p (x+y)

0<y=<x?

Solution The integral is improper because the integrand is unbounded as (x, y)
approaches (0, 0), a boundary point of D. (See Figure 14.22.) Nevertheless,
iteration leads to a proper integral:

1 ! |
———dA = lim dx / —dy
f/p (x +y)? =0+ o 0o (x+y)?
1 1 y=x*
= lim dx (— )
c—0+ /. x + y y=0
L/ 1
lim (— - ) dx
=0+ J, \x x“+x

1 1 1
fo — 5 dx =In(x + 1)\O In

I

(x + )~
y
a1
y=x
D y = x2
X
. 1
Figure 14.23 — is unbounded
Xy

on the domain D

dA
S'ETL YW Determine the convergence or divergence of [ = f / —, where
D Xy

D is the bounded region in the first quadrant lying between the line y = x and the

parabola y = x2.

Solution The domain D is shown in Figure 14.23. Again, the integral is improper
because the integrand 1/(xy) is unbounded as (x, y) approaches the boundary point
(0, 0). We have

I_f/dA_fldx *dy
D XY 0o X Je Y
1 1
1 1
=/ —(lnx—lnxz)dx=—/ de.
0o X 0 X

If we substitute x = ¢~ in this integral, we obtain

0 —t e}
I:—/ —(—e")dt:f tdt,
e} e”! 0

which diverges to infinity.
-

Remark In each of the examples above, the integrand was nonnegative on the
domain of integration. Nonpositive integrands could have been handled similarly,
but we cannot deal here with the convergence of general improper double integrals
with integrands f(x, y) that take both positive and negative values on the domain
D of the integral. We remark, however, that such an integral cannot converge unless

//Ef(x,y)dA
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is finite for every bounded, regular subdomain E of D. We cannot, in general,
determine the convergence of the given integral by looking at the convergence of
iterations. The double integral may diverge even if its iterations converge. (See
Exercise 21 below.) In fact, opposite iterations may even give different values.
This happens because of cancellation of infinite volumes of opposite sign. (Similar
behaviour in one dimension is exemplified by the integral fll dx /x, which does
not exist, although it represents the difference between “equal” but infinite areas.)
It can be shown (for a large class of functions containing, for example, continuous
functions) that an improper double integral of f(x, y) over D converges if the
integral of | f (x, y)| over D converges:

// | f(x, y)| dA converges = f/ f(x, yydA converges.
D D

In this case any iterations will converge to the same value. Such double integrals
are called absolutely convergent by analogy with absolutely convergent infinite
series.

A Mean-Value Theorem for Double Integrals

Let D be a set in the xy-plane that is closed and bounded and has positive area
A= p @A. Suppose that f(x, y) is continuous on D. Then there exist points
(x1, y1) and (x3, y2) in D where f assumes minimum and maximum values (see
Theorem 2 of Section 13.1); that is,

SOy < fx,y) < flx, y)

for all points (x, y) in D. If we integrate this inequality over D, we obtain

flx,yDA = f/ fx,y1)dA
D

< [[ rendns [[ reoraa= e ma
D D
Therefore, dividing by A, we find that the number

f= % /fo(x,y)dA

lies between the minimum and maximum values of f on D:
fLy) < f < fla ).

A set D in the plane is said to be connected if any two points in it can be joined
by a continuous parametric curve x = x(z), y = y(t), (0 <t < 1), lying in D.
Suppose this curve joins (x, y;) (where t = 0) and (x, y;) (where ¢ = 1). Let
g(?) be defined by

g = f(x@®),y®), 0<t<l.

Then g is continuous and takes the values f(xy, y;) att = 0and f(x3, y2) att = 1.
By the Intermediate-Value Theorem there exists a number 7y between 0 and 1 such
that f = g(t) = f(xo, yo), Wwhere xo = x (%) and yo = y(ty). Thus, we have found
a point {xg, yo) in D such that

1

area of D

f/D F ) dA = F(xo, o).

We have therefore proved the following version of the Mean-Value Theorem.
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A mean-malue theorem for double integrals

If the function f (x, y) is continuous on a closed, bounded, connected set D in the
xy-plane, then there exists a point (xp, ¥o) in D such that

f./z; Fiy)dA = f(xg, y0) x (area of D).

By analogy with the definition of average value for one-variable functions, we make
the following definition:

The average value or mean value of an integrable function f (x, y) over the
set D is the number

- 1
f= area of D f/D flx,y)da.

If f(x.y) > 0 on D, then the cylinder with base D and constant height f has
volume equal to that of the solid region lying above D and below the surface
z = f(x,y). Itis often very useful to interpret a double integral in terms of the
average value of the function which is its integrand.

m The average value of x over a domain D having area A is

1
—//di.
AJJp

Of course, x is just the x-coordinate of the centroid of the region D.

X

il

S ETLTJEY A large number of points (x, y) are chosen at random in the triangle
T with vertices (0, 0), (1, 0), and (1, 1). What is the approximate average value of
x2 + y? for these points?

Solution The approximate average value of x2 + y? for the randomly chosen
points will be the average value of that function over the triangle, namely,

1 1 x
—f/(x2+y2>dA=2/ dx/ 2+ ) dy
1/2 JJy 0 0
1 =X

1 Y 8 (! 2
=2 2 —y? d :—/ 3d = —.
/0 (xy+3y) b 30x X 3

y=0
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Let (a, b) be an interior point of a domain D on which f(x, y) is

r—>0 712

r—0 12

continuous. For sufficiently small positive r, the closed circular disk D, with centre
at (a, b) and radius r is contained in D. Show that

llm—/f fx,vWdA = f(a,b).
Solution If D, is contained in D, then by Theorem 3
— / fx,y)dA = f(xo, yo)
r

for some point (xo, yp) in D,. Asr — 0, the point (xo, yo) approaches (a, b). Since
f is continuous at (a, b), we have f(xg, yo) = f(a, b). Thus,

llm—// fx,v)dA = f(a,b).

| Exercises 14.3

In Exercises 1-12, determine whether the given integral
converges or diverges. Try to evaluate those that converge.

1. /:/ e *7Y dA, where Q is the first quadrant of the
o

xy-plane

1A
2. f f m, where Q is the first quadrant of the
g UAx Y

xy-plane.

s

xy-plane

3 dA, where Sisthe strip 0 < y < 1 in the

1
4. / f d A over the triangle 7' with vertices (0, 0),
T XY

(1, 1),and (1, 2)

_|._
5. / / x2 V 5 dA, where ( is the first quadrant of
0 (14 x2)(1+ y*)

the xy-plane

1
6. ——— dA, where H is the half-strip 0 < x < o0,
14+x+y
0<y<l1

// (1D g 4 8'f I g a
R2 R2

1 .
. / —e /¥ d A, where T is the region satisfying
TX

~1

N

y>land0 <y <x

10. /[_dL
T X+

where T is the region in Exercise 9

* 11, // e dA, where Q is the first quadrant of the xy-plane
o

1 1
12. // — sin — d A, where R is the region 2/7 < x < o0,
RX X

O0<y=<1/x
13. Evaluate

LS

where Sisthesquare 0 < x <1,0<y < |,

(a) by direct iteration of the double integral,

(b) by using the symmetry of the integrand and the domain
to write

122// dA ’
rX+y

where T is the triangle with vertices (0, 0), (1, 0), and
(1, 1.

14. Find the volume of the solid lying above the square S of
Exercise 13 and under the surface z = 2xy/(x2 + y?).

In Exercises 15-20, a and b are given real numbers. Dy is the
region0 < x < 1,0 < y < x* and Ry is the region 1 < x < oo,
0 < y < x*. Find all real values of k for which the given integral

converges.
dA
15. // 16. f/ y’dA
D X Dy
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dA _ .
17. / / A 18. / / = 27. Does f(x, y) = xy have an average value over the region
Ry R Y 0<x<o00,0<yc< 2?Ifsowhatisit?
19. / / xiybda 20. / / x*yPdA » 28. Find the exact value of the integral in Example 2. Hint:
Dy Ry integrate by parts in floo ]n(l + (l/xz)) dx.
# 21. Evaluate both iterations of the improper integral * 29. Let (a, b) be an interior point of a domain D on which the
function f(x, y) is continuous. For small enough h? 4 k2
the rectangle Rp with vertices (a, b), (a + h, b), (a. b + k),
//9 (x + y)3 and (a@ + h, b + k) is contained in D. Show that

where § is the square 0 < x < 1,0 < y < 1. Show that the lim
above improper double integral does not exist, by (h,k)~>(0,0) hk Rix
considering

flx,y) = fla, D).

Hint: see Example 7.

/ / *-y * 30. (Another proof of equality of mixed partials) Suppose
(e + Y)2 that f12(x, y) and f>;(x, y) are continuous in a
) ) ) ] neighbourhood of the point (a, b). Without assuming the

where T is that part of the square S lying under the line equality of these mixed partial derivatives, show that

X =y
In Exerciscs 22-24, find the average value of the given function
over the given region. // Suolx, y)dA = / Salx, y)dA,

w R R

22. x- overtherectanglea <x <b,c <y <d
23. x7 + v overthetriangle 0 < x <a,0 <y <a—x where R is the rectangle with vertices (a, b), (a + h, b),
24. 1/x overtheregion0 <x <1, X2 < y<Jx (a,b+k),and (a + h, b+ k) and 2+ k2 s sufficiently

* 25. Find the average distance from points in the quarter-disk small. Now use the result O_f Exercise 29 to show that
2412 <a? x> 0.y >0, to the line x + y=0. fi2(a, by = f21(a, b). (This reproves Theorem 1 of

T 0T Section 12.4. However, in that theorem we only assumed

continuity of the mixed partials ar (a, b). Here, we assume

=7 If so what is it? the continuity at all points sufficiently near (a, b).)

26. Does f(x, y) = x have an average value over the region

0<x<oo,0<y=<

14+ x

For many applications of double integrals, either the domain of integration or
the integrand function, or both, may be more easily expressed in terms of polar
coordinates than in terms of Cartesian coordinates. Recall that a point P with
Cartesian coordinates (x, y) can also be located by its polar coordinates [, 8], where
r is the distance from P to the origin O, and 6 is the angle O P makes with the
positive direction of the x-axis. (Positive angles 6 are measured counterclockwise.)
The polar and Cartesian coordinates of P are related by the transformations

X = rcosh; r2=x2+y2,
¥y =rsiné, tanf = y/x.

Consider the problem of finding the volume V of the solid region lying above
the xy-plane and beneath the paraboloid z = 1 — x> — y2. Since the paraboloid
intersects the xy-plane in the circle x> + y? = 1, the volume is given in Cartesian



Figure 14.24

(a) dA = dx dy in Cartesian
coordinates

(b) dA = r dr d6 in polar coordinates

24y =1

orr=1

Figure 14.25 The domain in the
Ay-plane
-
r=1
R 0 =2m
0
Figure 14.26 The domain in the

ré)-plane

y+dy
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coordinates by

2 2 : 1= 2 2
V=// 1—-x —y)dA:/ dx/ (1—x"—y7)dy.
x24y2<1 -1 —a/1-x2

Evaluating this iterated integral would require considerable effort. However, we
can express the same volume in terms of polar coordinates as

V= // 1—-r?dA.
r<l

In order to iterate this integral, we have to know the form that the area element d A
takes in polar coordinates.

y y T

rdo N dr

—
X

)IC X -}‘-dx x i oy 4dr
(2) (b)

In the Cartesian formula for V, the area element dA = dx dy represents the area
of the “infinitesimal” region bounded by the coordinate lines at x, x + dx, y, and
y + dy. (See Figure 14.24(a).) In the polar formula, the area element dA should
represent the area of the “infinitesimal” region bounded by the coordinate circles
with radii r and r + dr, and coordinate rays from the origin at angles 8 and 6 + d6.
(See Figure 14.24(b).) Observe that dA is approximately the area of a rectangle
with dimensions dr and r d6. The error in this approximation becomes negligible
compared with the size of d A as dr and df approach zero. Thus, in transforming a
double integral between Cartesian and polar coordinates the area element transforms
according to the formula

dxdy =dA =rdrdf.

In order to iterate the polar form of the double integral for V considered above, we
can regard the domain of integration as a set in a plane having Cartesian coordinates
r and 6. In the xy Cartesian plane the domain is a disk r < 1 (see Figure 14.25),
but in the r6 Cartesian plane (with perpendicular r- and 6-axes) the domain is the
rectangle R specified by 0 < r < 1 and 0 < 6 < 27. (See Figure 14.26.) The
area element in the r@-plane is dA* = dr d6, so area is not preserved under the
transformation to polar coordinates (d A = r d A*). Thus, the polar integral for V is
really a Cartesian integral in the r@-plane, with integrand modified by the inclusion
of an extra factor r to compensate for the change of area. It can be evaluated by
standard iteration methods:

27 !
V=//(1—r2)rdA*=/ de/ (1 =r®rdr
R 0 0
2r r2 r4 1
=f0 (?_Z)

do = = units?
= — units-.
2

0
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Remark 1t is not necessary to sketch the region R in the 76-plane. We are used to
thinking of polar coordinates in terms of distances and angles in the xy-plane and
can easily understand from looking at the disk in Figure 14.25 that the iteration of
the integral in polar coordinates correspondsto 0 < § <27 and 0 < r < 1. That
is, we should be able to write the iteration

2 1
V:/ d9/(1—r2)rdr
0 0

directly from consideration of the domain of integration in the xy-plane.

If R is that part of the annulus 0 < a? < x? + y? < b? lying in the

first quadrant and below the line y = x, evaluate
2
! I = f X da.
RX
= Solution Figure 14.27 shows the region R. It is specified in polar coordinates by
0<6<m/danda <r < b. Since
- R
/4 y_2 _ risin’f 20
a A - x2 r?cos’é ’
Figure 14.27 we have
7 /4 b
I:/ tan’6 d6 f rdr
0 a
1 /4
= - (b* —a?) / (sec’0 — 1) db
2 0
1 /4
= ~(b* — a*)(tanf — )
2 0
1 T 4 -
=_b2_2(1__): b2_2.
2( as) 1 3 ( as)
- |
IEZNEN  (Area of a polar region) Derive the formula for the area of the
polar region R bounded by the curve r = f(6) and therays 6 = « and @ = . (See
y Figure 14.28.)

Solution The area A of R is numerically equal to the volume of a cylinder of
height 1 above the region R:

A=// dxdy://rdrd@
R R

_______ 5 F®
AN B [T [rar=3 | (r@) as.

Figure 14.28 A standard area Observe that the inner integral in the iteration involves integrating r along the ray
problem for polar coordinates specified by 8 from O to f ().

_u




Figure 14.29 This volume is easily
calculated using iteration in polar
coordinates
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There is no firm rule as to whether one should or should not convert a double
integral from Cartesian to polar coordinates. In Example 1 above, the conversion
was strongly suggested by the shape of the domain but was also indicated by the
fact that the integrand, y?/x2, becomes a function of 6 alone when converted to
polar coordinates. It is usually wise to switch to polar coordinates if the switch
simplifies the iteration (i.e., if the domain is “simpler” when expressed in terms of
polar coordinates), even if the form of the integrand is made more complicated.

Z
b ©.a,a)

@, 0,007 4

m Find the volume of the solid lying in the first octant, inside the
cylinder x2 + y? = a2, and under the plane z = y.

Solution The solid is shown in Figure 14.29. The base is a quarter disk, which
is expressed in polar coordinates by the inequalities 0 < 8 < 7/2and 0 < r < a.
The height is given by z = y = r sin#. The solid has volume

/2 a /2 a 1
1% =/ d9/ (r sin@)r dr =/ sin @ do / r2dr = = a® units®.
0 0 0 0 3

The following example establishes the value of a definite integral that plays a very
important role in probability theory and statistics. It is interesting that this single-
variable integral cannot be evaluated by the techniques of single-variable calculus.

S EINI N (A very important integral) Show that

oo 2
/ e dx = /7.

o ¢}

Solution The improper integral converges, and its value does not depend on what
symbol we use for the variable of integration. Therefore, we can express the square
of the integral as a product of two identical integrals but with their variables of
integration named differently. We then interpret this product as an improper double
integral and reiterate it in polar coordinates:
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o0 2 2 i 2 o0 2
</ e dx) =/ e dx/ e dy
-0 —o0 —0
=// e—(X2+yZ)dA
R2
2n o0 )
:/ dG/ e rdr
0 0

R
=T.

. | )
=27 lim (——e ’)
0

R—>o0

The r integral, a convergent improper integral, was evaluated with the aid of the

substitution u = r2.

_m

As our final example of iteration in polar coordinates let us try something a little
more demanding.

24y 4 =4a?

Figure 14.30 The first octant part of
the intersection of the cylinder

x2 ++ v2 = 2ay and the sphere
)C2+}‘2+Zz :4a2

Find the volume of the solid region lying inside both the sphere
X+ y? + 7% = 4a? and the cylinder x% + y? = 2ay.

Solution The sphere is centred at the origin and has radius 2a. The equation of
the cylinder becomes

Ch(y—a)l=d

if we complete the square in the y terms. Thus, it is a vertical circular cylinder of
radius ¢ having its axis along the vertical line through (0, a, 0). The z-axis lies on
the cylinder. One-quarter of the required volume lies in the first octant. This part is
shown in Figure 14.30.




(1ty, vo)

Vo -----
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If we use polar coordinates in the xy-plane, then the sphere has equation
r? + z2 = 44? and the cylinder has equation #> = 2arsiné or, more simply,
r = 2asin . The first octant portion of the volume lies above the region specified
by the inequalities 0 < 6 < /2 and 0 < r < 2qa sin 6. Therefore, the total volume
is

/2 2asiné
v =4/ de f Va2 —rirdr (Letu = 4a®> — r2)).
0 0
/2 44°
= 2/ do Judu
0

4a? cos2 6
4 /2
=3 / (8a® — 8a’cos’ 0) db (Let v = sin@.).
0
16 E
= R 1-— d
3 a [ ( v ) v
16, 3
= —3—7ra — ?a = —(3 — 4)a® cubic units.

(X0, yo)

Change of Variables in Double Integrals

The transformation of a double integral to polar coordinates is just a special case of
a general change of variables formula for double integrals. Suppose that x and y
are expressed as functions of two other variables 4 and v by the equations

x=x(u,v)
y = y(u, v).

We regard these equations as defining a transformation (or mapping) from points
(u#, v) in a yv-Cartesian plane to points (x, y) in the xy-plane. (See Figure 14.31.)
We say that the transformation is one-fo-one from the set S in the uv-plane onto the
set D in the xy-plane provided:

Figure 14.31 Under the

. X =x(u,v) .
transformation the lines
y =y, v)
1t = ug and v = vg in the uv-plane get

x = x(ug, v)

mapped to the curves {
y = y(uo, v)

x =x(u, vo) .

and in the x y-plane,
y = y(u, vp)

which we still label as 4 = ug and

v = vg. The point (g, vy) is mapped to
the point (xg, yo)

(i) every point in S gets mapped to a point in D,
(ii) every pointin D is the image of a point in S, and
(iii) different points in § get mapped to different points in D.

If the transformation is one-to-one, the defining equations can be solved for « and
v as functions of x and y, and the resulting inverse transformation,

u=ux,y)

v=uv(x,y),
is one-to-one from D onto S.

Letus assume that the functions x (#, v) and y (4, v) have continuous first partial
derivatives and that the Jacobian determinant

a(x,y)

a(u, v)

#0 at  (u,v).

As noted in Section 12.8, the Implicit Function Theorem implies that the transfor-
mation is one-to-one near (¢, v) and the inverse transformation also has continuous
first partial derivatives and nonzero Jacobian satisfying
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Figure 14.32 The image in the
xy-plane of the area element du dv in
the uv-plane

o, v) 1 on D
8(x, y) N a(x, y) !
o(u,v)

13 TN The transformation x = rcosf, y = rsin6 to polar coordinates
has Jacobian

(. y) _
ar,0)

cosd —rsinf
sin @ rcosf

Near any point except the origin (where r = 0) the transformation is one-to-one.
(In fact, it is one-to-one from any set in the r@-plane that does not contain more
than one point where » = 0 and lies in, say, the strip 0 < 6 < 2m.)

_m

A one-to-one transformation can be used to transform the double integral

//;)f(x,y)df\

to a double integral over the corresponding set S in the uv-plane. Under the
transformation, the integrand f (x, y) becomes g(u, v) = f (x (u,v), y(u, v)). We
must discover how to express the area element dA = dx dy in terms of the area
element du dv in the uv-plane.

For any fixed value of u (say u = c), the equations
x=x(u,v) and y=yu,v)

define a parametric curve (with v as parameter) in the xy-plane. This curve is
called a u-curve corresponding to the value ¥ = ¢. Similarly, for fixed v the
equations define a parametric curve (with parameter u) called a v-curve. Consider
the differential area element bounded by the u-curves corresponding to nearby
values u and u 4 du and the v-curves corresponding to nearby values v and v + dv.
Since these curves are smooth, for small values of du and dv the area element is
approximately a parallelogram, and its area is approximately

dA =|POxPR|,

where P, Q, and R are the points shown in Figure 14.32. The error in this
approximation becomes negligible compared with d A as du and dv approach zero.
Y4

u+du
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Now P_é = dx i+ dy}, where

] ] d d
dx = —xdu + —xdv and dy = —ydu + —ydv.
du Jdv ou Jdv

However, dv = 0 along the v-curve P Q, so

— 0 ay
PQ = 2 du 1+—duJ
ou
Similarly,
0
PR = —xd i+ —va
Hence
i J
d
dA = 3_Xdu ayd ‘_ M dudv:
d(u, v)

0x ay
5 F=dv %d v
that is, the absolute value of the Jacobian d(x, y)/d(u, v) is the ratio between
corresponding area elements in the xy-plane and the uv-plane:

(x,y)

dudv.
d(u, v)

dA =dxdy = ‘

The following theorem summarizes the change of variables procedure for a double
integral.

Change of variables formula for double integrals

Letx = x(u, v), y = y(u, v) be a one-to-one transformation from a domain S in the
uv-plane onto a domain D in the xy-plane. Suppose that the functions x and y, and
their first partial derivatives with respect to u and v, are continuous in S. If f(x, y)
is integrable on D, and if g(u, v) = f(x(u, v), y(u, v)), then g is integrable on §

and
/[ Fxy)dxdy = ffg(u v)

3( 2 Y)

dudv.
, V)

Remark Tt is not necessary that § or D be closed or that the transformation
be one-to-one on the boundary of S. The transformation to polar coordinates
maps the rectangle 0 < » < 1, 0 < 6 < 27 one-to-one onto the punctured disk
0<x2+ y2 < 1 and, as in the first example in this section, we can transform an
integral over the closed disk x2 +y? < 1 to one over the closed rectangle 0 < r < I,
0<6 <2m.
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Figure 14.33

Use an appropriate change of variables to find the area of the elliptic
disk E given by
2 2
x* oy
Solution Under the transformation x = au, y = bv, the elliptic disk E is the
one-to-one image of the circular disk D given by u?> + v> < 1. Assuminga > 0
and b > 0, we have

a(x,y)

TR dudv = \

dxdy:{

a 0
o “dudv = abdu dv.
Therefore, the area of E is given by

// ldxdy = // abdudv = ab x (area of D) = wab square units.
E D

It is often tempting to try to use the change of variable formula to transform the
domain of a double integral into a rectangle so that iteration will be easy. As the
following example shows, this usually involves defining the inverse transformation
(u and vin terms of x and y). Remember that inverse transformations have reciprocal
Jacobians.

S EINTIER M Find the area of the finite plane region bounded by the four parabolas
y=2x%y=2x%x =y% and x = 3y°.

Solution The region, call it D, is sketched in Figure 14.33. Let

X

and v= .

x? y

Then the region D corresponds to the rectangle R in the uv-plane given by
l1<u<2andl < v < 3. Since

du,v) | =2y/x%  1/x2 3 2.2
= ) 3 = = 31,{ v N
a(x, y) 1/y —2x/y x2y?
it follows that
a(x,y) _ 1
au,v)|  3uv?
and so the area of D is given by
[ o= s
X =
D 4 r 3u?v? waev
1/2du Sdv 1 1 2 1 .
= - — — = — X — X — = — square units.
3w ), wT3 X379
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The following example shows what can happen if a transformation of the domain
of a double integral is not one-to-one.

STETTICEN Let D be the square 0 < x < 1,0 < y < 1in the xy-plane, and let
Sbethesquare0 < u < 1,0 < v < 1 inthe uv-plane. Show that the transformation
x = du — 4u?, y=v

maps $ onto D, and use it to transform the integral [ = [, p dx dy. Compare the
value of I with that of the transformed integral.

Solution Since x = 4u — 4u? = 1 — (1 — 2u)?, the minimum value of x on the
interval 0 < u < lis O (at u = 0 and u = 1), and the maximum value is 1 (at
u = %). Therefore, x = 4u — 4u® maps the interval 0 < u < 1 onto the interval
0<x <1 Sincey = vclearly maps0 < v < lonto0 < y < 1, the given

transformation maps S onto D. Since

a(x, y)
a(u, v)

dudv

‘dudv = |4 — 8u|dudv,

4—8u 0
dxdy—‘ —|l 0 l’

transforming I leads to the integral

1 1 172
J=//|4—8u|dudu=4/ dv/ |1—2u|du=8/ (1 —2u)du = 2.
s 0 0 0

However, I = ﬂD dxdy = areaof D = 1. The reason that J # [ is that the
transformation is not one-to-one from S onto D; it actually maps S onto D twice.
The rectangle R definedby 0 < u < % and 0 < v < 1 is mapped one-to-one onto D
by the transformation, so the appropriate transformed integral is ([, |4 — 8u| du dv,
which is equal to /.

In Exercises 1-6, evaluate the given double integral over the disk line y = +/3x.

D given by x4+ v < a%, wherea > 0.

12. Find // xdA, where S is the disk segment x2 + y2 <2,
N

1 // «? + v dA 2. // V24 y2dA c>1
D D -

1
] = an
D /X242

13. Evaluate || (x2 + y*) dA, where T is the triangle with
4. lx|dA -
D .

vertices (0, 0), (1, 0), and (1, 1).

S. // x2dA 6. // x2y2 dA 14. Evaluate // ln(x2 +y2) dA.
D D x24y2<]

In Exercises 7-10, evaluate the given double integral over the 15. Find the average distance from the origin to points in the
quarter-disk Q given by x > 0, y > 0, and x? + y? < a2, where disk x? + y2 < 2.
a > 0. )

. 2.2 .
16. Find the average value of e~ +¥7) over the annular region

7. // ydA 8. f[(x+y)dA O<a</x>+y2<bh
Q 0

9, / / S gA 10. / /
Jo 0

17. For what values of k, and to what value, does the integral

2Zxy dA f / diA converge?
x2+y? ayrel 2+ yHF .

18. For what values of k, and to what value, does the integral

11. Evaluate //(x + y)d A, where S is the region in the first dA
s / / —————— converge?
R

quadrant lying inside the disk xZ 4+ y2 < ¢? and under the

2 (14 x2 + yHk
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19.

20.

21.

22.

23.

24.

* 25,

26.

* 27,

* 28,

29,

30.

* 31.

32,

33.
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Evaluate / / xy dA, where D is the plane region satisfying
D
x>0,0<y 5x,andx2+y2 < a2

Evaluate ydA, where C is the upper half of the

C
cardioid disk r < | 4 cos 6.
Find the volume lying between the paraboloids
c=x"4+y?and 3z =4 — xZ — 2
Find the volume lying inside both the sphere
x7 4+ v2 + 22 = 42 and the cylinder x2 + y2 =ax.
Find the volume lying inside both the sphere
x2 4+ v2 + 22 = 242 and the cylinder x2 + y? = 2.
Find the volume of the region lying above the xy-plane,
inside the cylinder x> + y? = 4 and below the plane
z=x+y+4
Find the volume of the region lying inside all three of the
circular cylinders x4 y2 = az, 242 = a?, and
v2 + 22 = a2, Hinr: make a good sketch of the first octant
part of the region and use symmetry whenever possible.

Find the volume of the region lying inside the circular
cylinder x2 4+ y2 = 2y and inside the parabolic cylinder
2=

Many points are chosen at random in the disk

x” 4 vZ < 1. Find the approximate average value of the
distance from these points to the nearest side of the smallest

square that contains the disk.

Find the average value of x over the segment of the disk
x? 412 < 4 lying to the right of x = 1. What is the centroid
of the segment?

Find the volume enclosed by the ellipsoid
2 2

y
+ =+
2 ¢

(5]

i.’\l

=1

(3]

—5
a-

Find the volume of the region in the first octant below the
paraboloid

a? B2

Hint: use the change of variables x = au, y = bv.

Evaluate f / Y dA.
[x|+¥|=a

Find / / x* + yz) d A, where P is the parallelogram
JJp

bounded by the linesx +y=1,x +y=2,3x +4y =5,
and 3x 44y = 6.

Find the area of the region in the first quadrant bounded by
the curves xy = 1, xy =4,y = x, and y = 2x.

34.

% 35.

36.

+ 37.

* 38.

Evaluate (x2 + yz) dA, where R is the region in the

R
first quadrant bounded by y =0, y = x, xy = |, and
x2 _ 2 =1
y .
Let T be the triangle with vertices (0, 0), (1, 0), and (0, 1).

Evaluate the integral / f =0/ g4
T

(a) by transforming to polar coordinates
(b) by using the transformationu =y —x, v =y + x.

Use the method of Example 7 to find the area of the region
inside the ellipse 4x2 4+ 9y2 = 36 and above the line
2x +3y =6.

(The error function) The error function, Erf(x), is defined
forx > 0 by

2 Yo
Erf(x) = ﬁ / e" dt.
0

2 4 /4 5 5
Show that (Erf(x)) = / (1 — e COS"’) do.
T Jo

Hence deduce that Erf(x) > /1 — e,

(The gamma and beta functions) The gamma function
T'(x) and the beta function B(x, y) are defined by

o0
I'(x) =/ e dr, (x> 0),
0
1
B(x,y) =/ txfl(l —0¥ 4, (x>0, y > 0).
0

The gamma function satisfies

and
n=0,12..).

Tx+1) =xT'x)
T'(n+1)=n!,

Deduce the following further properties of these functions:

(@ I'x) = 2/ sl ds, x>0,
0

1 3 1
wr(z)-vm r(3)-iw

(c) Ifx > 0 and y > 0, then
/2
B(x, y) =2/ cos> 1 gsin® 1 9 4o,
0

B T'xoTy)

(d) B(x,y)= Taty)
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Now that we have seen how to extend definite integration to two-dimensional
domains, the extension to three (or more) dimensions is straightforward. For
a bounded function f(x,y, z) defined on a rectangular box B (xp < x < xi,
yo <y < y1,20 <z < z1), the triple integral of f over B,

// fx,y,2)dV or // f(x,y, z)dxdydz,
B B

can be defined as a suitable limit of Riemann sums corresponding to partitions
of B into subboxes by planes parallel to each of the coordinate planes. We omit
the details. Triple integrals over more general domains are defined by extending
the function to be zero outside the domain and integrating over a rectangular box
containing the domain.

All the properties of double integrals mentioned in Section 14.1 have analogues
for triple integrals. In particular, a continuous function is integrable over a closed,
bounded domain. If f(x, y,z) = 1 on the domain D, then the triple integral gives
the volume of D:

Volume of D = /// av.
D

The triple integral of a positive function f(x, v, z) can be interpreted as the “hyper-
volume” (i.e., the four-dimensional volume) of a region in 4-space having the
set D as its three-dimensional “base” and having its top on the hypersurface
w = f(x,y,z). This is not a particularly useful interpretation; many more useful
ones arise in applications. For instance, if § (x, y, z) represents the density (mass per
unit volume) at position (x, y, z) in a substance occupying the domain D in 3-space,
then the mass m of the solid is the “sum” of mass elements dm = §(x.y,2)dV
occupying volume elements d V':

mass =/:/:/ 8(x,v,z)dV.
D

Some triple integrals can be evaluated by inspection, using symmetry and known
volumes.

| Example 1 [N

/// 2+ x —sinz)dV.
x4y 4z2<al

Solution The domain of integration is the ball of radius a centred at the origin.
The integral of 2 over this ball is twice the ball’s volume, that is, 87ra?/3. The
integrals of x and sin z over the ball are both zero, since both functions are odd in
one of the variables and the domain is symmetric about each coordinate plane. (For
instance, for every volume element dV in the half of the ball where x > 0, thereis a
corresponding element in the other half where x has the same size but the opposite
sign. The contributions from these two elements cancel one another.) Thus,

8 8
/// (2+x—sinz)dV:—na3+0+0:—na3.
x24y24z2<q? 3 3




868  CHAPTER 14 Multiple Integration

Figure 14.34
(a) The iteration in Example 2

(b) The iteration in Example 3

Most triple integrals are evaluated by an iteration procedure similar to that used
for double integrals. We slice the domain D with a plane parallel to one of the
coordinate planes, double integrate the function with respect to two variables over
that slice, and then integrate the result with respect to the remaining variable. Some
examples should serve to make the procedure clear.

Solution As indicated in Figure 14.34(a), we will slice with planes perpendicular
to the z-axis, so the z integral will be outermost in the iteration. The slices are
rectangles, so the double integrals over them can be immediately iterated also. We
do it with the y integral outer and the x integral inner, as suggested by the line
shown in the slice.

¢ b a
1:[ dzf dy/ (xy? + %) dx
0 0 0
c b 2.2 x=a
:/ dzf dy (x—y—+xz3>
0 0 2

x=0
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If T is the tetrahedron with vertices (0, 0, 0), (1, 0,0), (0, 1, 0),
and (0, 0, 1), evaluate

1= [[[ sav.

Solution The tetrahedron is shown in Figure 14.34(b). The plane slice in the
plane normal to the x-axis at position x is the triangle 7' (x) shown in that figure; x
is constant and y and z are variables in the slice. The double integral of y over T'(x)
is a function of x. We evaluate it by integrating first in the z direction and then in
the y direction as suggested by the vertical line shown in the slice:

1—x 1—x—y
// ydA=/ dy/ yvdz
T(x) 0 0
1—x

=f y(l—x—y)dy
0

The value of the triple integral 7 is the integral of this expression with respect to the
remaining variable x, to sum the contributions from all such slices between x = 0
and x = 1:

l—x

= é(l—x)3.

0

1

I /l L v dx = =1 = 0
f— —_ — X = - — —_ — .
o 6 T Y T

__n

In the above solution we carried out the iteration in two steps in order to show
the procedure clearly. In practice, triple integrals are iterated in one step, with no
explicit mention made of the double integral over the slice. Thus, using the iteration
suggested by Figure 14.34(b), we would immediately write

1 1—x 1—x—y
I :/ dx / dy / yvdz.
0 0 0

The evaluation proceeds as above, starting with the right (i.e., inner) integral,
followed by the middle integral and then the left (outer) integral. The triple integral
represents the “sum” of elements y dV over the three-dimensional region 7. The
above iteration corresponds to “summing” (i.e., integrating) first along a vertical
line (the z integral), then summing these one-dimensional sums in the y direction
to get the double sum of all elements in the plane slice, and finally summing these
double sums in the x direction to add up the contributions from all the slices. The
iteration can be carried out in other directions; there are six possible iterations
corresponding to different orders of doing the x, y, and 7z integrals. The other five

are
1 1—x l—x—z
I :/ dxf dz/ ydy,
0 0 0
1 1—y 1—x—y
I:f dy/ dx/ ydz,
0 0 0
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(=)
S~
‘<
!\l
<
U
=

1 1—-y
/ dyf dz

1 1—z
/ dz/ dx

0
1 1—z 1—y—z
I:/ dz/ dyf ydx
0 0 0

You should verify these by drawing diagrams analogous to Figure 14.34(b). Of
course, all six iterations give the same result.

[=3

ydy,

S~
=
)1
N

=)

It is sometimes difficult to visualize the region of 3-space over which a given
triple integral is taken. In such situations try to determine the projection of that
region on one or other of the coordinate planes. For instance, if aregion R is bounded
by two surfaces with given equations, combining these equations to eliminate one
variable will yield the equation of a cylinder (not necessarily circular) with axis
parallel to the axis of the eliminated variable. This cylinder will then determine the
projection of R onto the coordinate plane perpendicular to that axis. The following
example illustrates the use of this technique to find a volume bounded by two
surfaces. The volume is expressed as a triple integral with unit integrand.

3'E LYW Find the volume of the region R lying below the plane z = 3 — 2y
and above the paraboloid z = x? + y2.

Solution The region R is shown in Figure 14.35. The two surfaces bounding R
intersect on the vertical cylinder x> + y2 =3 — 2y, or x>+ (y + 1)?> = 4. If D is
the circular disk in which this cylinder intersects the xy-plane, then partial iteration

gives
3-2y
= [[[av=][ axay [ " e
R D x24y?

Figure 14.35 shows a slice of R corresponding to a further iteration of the double
integral over D:

3- 2\ —y? 3-2y
/ dy f dz,
N 3-2y—y? x24y?

but there is an easier way to iterate the double integral. Since D is a circular disk of
radius 2 and centre (0, —1), we can use polar coordinates with centre at that point
(i.e.,x =rcosf,y = —1 4+ rsin6. Thus,

=/ (3 —=2y —x*—yHdxdy
D

://(4—x2—(y+1)2)dxdy
D
2 2 r4
:/ dQ/ 4 —r¥rdr=2n <2r2——)
) 0 4

2

= 87 cubic units.
0




Figure 14.35 The volume above a
paraboloid and under a slanting plane
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x . X+ +DP=4

As was the case for double integrals, it is sometimes necessary to reiterate a given
iterated integral so that the integrations are performed in a different order. This task
is most easily accomplished if we can translate the given iteration into a sketch of
the region of integration. The ability to deduce the shape of the region from the
limits in the iterated integral is a skill that one acquires with practice. You should
first determine the projection of the region on a coordinate plane, namely, the plane
of the two variables in the outer integrals of the given iteration.

It is also possible to reiterate an iterated integral in a different order by manip-
ulating the limits of integration algebraically. We will illustrate both approaches
(graphical and algebraic) in the following examples.

m Express the iterated integral

1 1 z
I:/ dy/ dz/ fx.y,2)dx
0 v 0

as a triple integral, and sketch the region over which it is taken. Reiterate the integral
in such a way that the integrations are performed in the order: first y, then z, then
x (i.e., the opposite order to the given iteration).

Solution We express I as an uniterated triple integral:

I:// f(x,y,2)dV.
R

The outer integral in the given iteration shows that the region R lies between the
planes y = 0 and y = 1. For each such value of y, z must lie between y and
1. Therefore, R lies below the plane z = 1 and above the plane 7 = y, and the
projection of R onto the yz-plane is the triangle with vertices (0, 0, 0), (0, 0, 1), and
(0, 1, 1). Through any point (0, y, 2) in this triangle, a line parallel to the x-axis
intersects R between x = O and x = z. Thus, the solid is bounded by the five
planesx =0,y =0,z =1, y = z, and z = x. It is sketched in Figure 14.36(a),
with slice and line corresponding to the given iteration.
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Figure 14.36

(a) The solid region for the triple
integral in Example 5 sliced
corresponding to the given
iteration

(b) The same solid sliced to conform
to the desired iteration

(1,0,1)

=X

(a) (b)

The required iteration corresponds to the slice and line shown in Figure 14.36(b).
Therefore, it is

1 1 z
I=/ dx/ dz/ fx,y,2)dy.
0 X 0

[FETLTIENW  Use algebra to write an iteration of the integral
1 1 y
I=/ dx/ dy/ fx,y,2)dz
0 x x

with the order of integrations reversed.

Solution From the given iteration we can write three sets of inequalities satisfied
by the outer variable x, the middle variable y, and the inner variable z. We write
these in order as follows:

0<x=x1 inequalities for x
x<y<l inequalities for y
x<z<y inequalities for z.

Note that the limits for each variable can be constant or can depend only on variables
whose inequalities are on lines above the line for that variable. (In this case, the
limits for x must both be constant, those for y can depend on x, and those for z can
depend on both x and y.) This is a requirement for iterated integrals; outer integrals
cannot depend on the variables of integration of the inner integrals.

We want to construct an equivalent set of inequalities with those for z on the
top line, then those for y, then those for x on the bottom line. The limits for z
must be constants. From the inequalities above we determine that 0 < x < z and
z <y < 1. Thus z must satisfy O < z < 1. The inequalities for y can depend on z.
Sincez < yand y < 1, we have z < y < 1. Finally, the limits for x can depend on
both y and z. We have 0 < x,x < y,and x < z. Since we have already determined
that z < y, we must have 0 < x < z. Thus, the revised inequalities are




O0<zx<l1
z<y=<l

0=<x=<z
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inequalities for z
inequalities for y

inequalities for x

and the required iteration is

1 1 z
I:/ dZ/ dy/ f(xayvz)dx'
0 z 0

| Exercises 14.5

In Exercises 1-12, evaluate the triple integrals over the indicated
region R. Be alert for simplifications and auspicious orders of
iteration.

1. /f/(l +2x — 3y)dV,overthe box —a < x < a,
R

—h<y<b —c<z<c
2. /// xyzdV,overthebox 0 <x <1, -2<y <0,
§f§4
3. / / (3 +2xy)dV, over the solid hemispherical dome D
gi‘venDby x>+ yv2+z2<4andz >0
4. / / / x dV, over the tetrahedron bounded by the coordinate
JJIR

planes and the plane al + 4 + o
a b ¢
5. // ()c2 + yz) dV,overthecube 0 < x,y,z <1
R

6. // ()c2 + y2 + 22) dV, over the cube of Exercise 5
R

7. // (xy +22)dV,overthe set 0 < z < 1 — |x| — |y|
R

8. //f yzze_x-"‘" dV,overthecube 0 < x,y,z <1
R

9. /// sin(ry*)dV, over the pyramid with vertices (0, 0, 0),
JJR
(0.1,0), (1, 1,0), (1,1, 1), and (0, 1, 1)
10. /// ydV, over that part of the cube 0 < x, y, z < 1 lying
R

above the plane y 4+ z = | and below the plane
x+y+z=2

1
11. / /] — dV, over the region bounded by the six
JJr 4y +2)3

plinesz=1,z=2,y=0,y=z,x=0,andx =y +z

12. /// cos x cos y cos 7 d V, over the tetrahedron defined by
R
x2>20,y>0,z>0,andx+y+z<m
13. Evaluate /f/ ™32 4y | Hing: use the result of
R3

Example 4 of Section 14.4.

14. Find the volume of the region lying inside the cylinder
x2 + 4y? = 4, above the xy-plane and below the plane
z2=24x.

15. Find / / f xdV, where T is the tetrahedron bounded by
T

theplanesx = l,y=1,z=1landx +y +z =2.

16. Sketch the region R in the first octant of 3-space that has
finite volume and is bounded by the surfaces x = 0, z = 0,
x4y =1,and z = y?. Write six different iterations of the
triple integral of f(x, y, z) over R.

In Exercises 17-20, express the given iterated integral as a triple

integral and sketch the region over which it is taken. Reiterate

the integral so that the outermost integral is with respect to x and

the innermost is with respect to z.

1 1—-z i
*17. / dz/ dy/ Sy, 2)dx
0 0 0
1 1 ¥y
*18. / dz/ dy/ f(x,y,2)dx
0 z 0
1 1 x—Z
*19, / dz/ dx/ fx,y,2)dy
0 b4 0

1 JI=2 1
* 20, / dy/ dz/
0 0 y2+z2

21. Repeat Exercise 17 using the method of Example 6.

S, y,2)dx

22. Repeat Exercise 18 using the method of Example 6.
23. Repeat Exercise 19 using the method of Example 6.
24. Repeat Exercise 20 using the method of Example 6.
25. Rework Example 5 using the method of Example 6.
26. Rework Example 6 using the method of Example 5.
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In Exercises 27-28, evaluate the given iterated integral by x24+y242overthecube 0 <x <1,0<y <1,
reiterating it in a different order. (You will need to make a good 0<z=<1

sketch of the region.)

)

e"‘dy

* 30. State a Mean-Value Theorem for triple integrals analogous
to Theorem 3 of Section 14.3. Use it to prove that if
f(x,y, z) is continuous near the point (a, b, ¢) and if
Be(a, b, ¢) is the ball of radius € centred at (a, b, c), then

I—x
+ 28, f dr/ / “2(7”))
¥ . » lim //f (x,v,2)dV = f(a,b,c).
29. Define the average value of an integrable function f(x, y, z) e—0 4rrel B.(a,b,c)

over a region R of 3-space. Find the average value of

The change of variables formula for a double integral extends to triple (and higher-
order) integrals. Consider the transformation

x =x(u, v, w),
y =y, v, w),
z =z(u, v, w),
where x, y, and z have continuous first partial derivatives with respect to u, v,

and w. Near any point where the Jacobian d(x, y, z)/9(u, v, w) is nonzero, the
transformation scales volume elements according to the formula

3(x, ¥, 2)

av =d dz=
rayar Hu; v, w)

dudvdw.

Thus, if the transformation is one-to-one from a domain S in uvw-space onto a
domain D in xyz-space, and if

glu, v, w) = f(x@u, v, w), y(u, v, w), 2(u, v, w)),

then
// flx, y,z)dxdydszffg(u,v w)

The proof is similar to that of the two-dimensional case given in Section 14.4. See
Exercise 35 below.

X, y,2)

dw.
8(, ) dudvdw

Under the change of variables x = au, y = bv, z = cw, where
a, b, c > 0, the solid ellipsoid E given by

2 2 2
x y z
2Tptast

becomes the ball B given by u? + v2 + w? < 1. Since the Jacobian of this
transformation is

0 0
Ax, y, a
33D o p ol = abe,
a(u, v, w) 0 0 c

the volume of the ellipsoid is given by




X

Figure 14.37
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VolumeofE:/// dxdydz
E

= f// abcdu dvdw = abc x (Volume of B)
B

4 . .
= —gnabc cubic units.

Cylindrical Coordinates

Among the most useful alternatives to Cartesian coordinates in 3-space are two
coordinate systems that generalize plane polar coordinates. The simpler of these
is the system of cylindrical coordinates. It uses ordinary plane polar coordinates
in the xy-plane while retaining the Cartesian z coordinate for measuring vertical
distances. Thus, each point in 3-space has cylindrical coordinates [r, 6, z] related
to its Cartesian coordinates (x, y, z) by the transformation

x=reosh,  y=rsinl, =12

Figure 14.37 shows how a point P is located by its cylindrical coordinates [r, 8, z]
as well as by its Cartesian coordinates (x, y, z). Note that the distance from the
originto P is

d=Vr+22=/x2+y2 + 22

The point with Cartesian coordinates (1, 1, 1) has cylindrical coor-
dinates [\/i 7 /4, 1]. The point with Cartesian coordinates (0, 2, —3) has cylindri-
cal coordinates [2, /2, —3]. The point with cylindrical coordinates [4, —m /3, 5]
has Cartesian coordinates (2, —2/3, 5).

|

cylinder r = constant

P=(x,y,2)

P=1r0,z]

=

JATA

horizontal plane
Z = constant

vertical half-plane” ¥

X 6 = constant
The cylindrical coordinates of a point Figure 14.38 The coordinate surfaces for cylindrical
coordinates

The coordinate surfaces in cylindrical coordinates are the r-surfaces (vertical cir-
cular cylinders centred on the z-axis), the 6-surfaces (vertical half-planes with edge
along the z-axis), and the z-surfaces (horizontal planes). (See Figure 14.38.) Cylin-
drical coordinates lend themselves to representing domains that are bounded by
such surfaces and, in general, to problems with axial symmetry (around the z-axis).
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The volume element in cylindrical coordinates is
dV =rdrdfdz,

whichis easily seen by examining the infinitesimal “box” bounded by the coordinate
surfaces corresponding to values r,r +dr, 6,6 +d#6, z, and z+dz (see Figure 14.39),
or by calculating the Jacobian

cos® —rsing 0O

B(x_,y,z_)z sinf rcosé O|=r.
a(ra95 Z) O 0 1
Zz
1 rd
TR

dV =rdrdfdz __|

G
IN
-::.-:.::'.II' !i

>
=

Figure 14.39 The volume element
in cylindrical coordinates

Example 3 JECHANIR

// 2+ yHdv
D

over the first octant region bounded by the cylinders x> + y?> = 1 and x*> + y*> = 4
andthe planesz =0,z =1,x =0,and x = y.

Solution In terms of cylindrical coordinates the region is bounded by r = 1,
r=2,0=m/4,0 =n/2,7 =0,and z = 1. (See Figure 14.40. It is a rectangular
coordinate box in r6z-space.) Since the integrand is x> 4 y? = r?, the integral is

1 72 2
// (x2+y2)dV=/ dz/ dG/ rirdr
D 0 /4 1

T 7 AR 15
2(1‘0)(5_Z><Z—Z):E”'

This integral would have been much more difficult to evaluate using Cartesian
Figure 14.40 coordinates.

IS

n




Fiyi42=6

Figure 14.41
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ENAEY- N Use a triple integral to find the volume of the solid region inside
the sphere x2 + y*> 4 z> = 6 and above the paraboloid z = x? + y.

Solution One-quarter of the required volume lies in the first octant. (See region
R in Figure 14.41.) The two surfaces intersect on the vertical cylinder

6—x>—yr=z72= x4+ yH?,
or, in terms of cylindrical coordinates,
P +rt—6=0
r*+3)(r* —2) =0.
The only relevant solution to this equation is r = V2. Thus, the required volume

lies above the disk of radius ~/2 centred at the origin in the xy-plane. The total
volume V is

o= o [T

ﬁ
=27r/ —r2—r>dr
0

L ,
= 27'[ [ = 2)1/ ]
3 4 1lo
= |:63,£ g - j| = = (6+/6 — 11) cubic units

Spherical Coordinates

In the system of spherical coordinates a point P in 3-space is represented by the
ordered triple [p, ¢, 8], where p is the distance from P to the origin O, ¢ is the
angle the radial line O P makes with the positive direction of the z-axis, and € is
the angle between the plane containing P and the z-axis and the xz-plane. (See
Figure 14.42.) Itis conventional to consider spherical coordinates restricted in such
awaythat p > 0,0 < ¢ <m,and 0 <8 < 27 (or —r < 6 < m). Every
point not on the z-axis then has exactly one spherical coordinate representation,
and the transformation from Cartesian coordinates (x, y, z) to spherical coordinates
[p, ¢, 8] is one-to-one off the z-axis. Using the right-angled triangles in the figure,
we can see that this transformation is given by:

x = psingcosh
y=psingsing
7. =pc0os9.

Observe that
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K4

X

Figure 14.42

pPr=xt+y 4+t =rt4 2
and that the r coordinate in cylindrical coordinates is related to p and ¢ by

r=+/x%2+y%=psing¢.

Thus, also
%) 2
tan¢=£=—-)—c———tz—- and tan@:z.
Z Z X

If = 0or ¢ = m, then r = 0, so the 6 coordinate is irrelevant at points on the
Z-axis.

¢ = constant
cone
P=(xy2

=[p, ¢,0] P=lp,¢,0]

p = constant
sphere

\

y

@ = constant
vertical half-plane

The spherical coordinates of a point Figure 14.43 The coordinate surfaces for spherical

coordinates

Some coordinate surfaces for spherical coordinates are shown in Figure 14.43. The
p-surfaces (p = constant) are spheres centred at the origin; the ¢-surfaces (¢ =
constant) are circular cones with the z-axis as axis; the 8-surfaces (¢ = constant) are
vertical half-planes with edge along the z-axis. If we take a coordinate system with
origin at the centre of the earth, z-axis through the north pole, and x-axis through
the intersection of the Greenwich meridian and the equator, then the intersections
of the surface of the earth with the ¢-surfaces are the parallels of latitude, and the
intersections with the #-surfaces are the meridians of longitude. Since latitude is
measured from 90° at the north pole to —90° at the south pole, while ¢ is measured
from O at the north pole to m (= 180°) at the south pole, the coordinate ¢ is
frequently referred to as the colatitude coordinate. 6 is the longitude coordinate.
Observe that € has the same significance in spherical coordinates as it does in
cylindrical coordinates.

Find:

(a) the Cartesian coordinates of the point P with spherical coordinates
[2,7/3,7/2] and
(b) the spherical coordinates of the point Q with Cartesian coordinates (1, 1, V2).
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Solution
(@) If p=2,¢ =n/3,and 8 = 7 /2, then

x = 2sin(7/3) cos(r/2) = 0
y = 2sin(rr/3) sin(/2) = V3
z=2cos(m/3) = 1.

The Cartesian coordinates of P are (0, v/3, 1).
(b) Given that

psingpcosf =x =1
psingsing =y =1
pcos¢p =z = V2,

Wecalculatethat,o2 =14+142=4,35p=2. Alsorl =141 =2,
sor = /2. Thustang = r/z = 1, s0 ¢ = w/4. Also, tanf = y/x = 1,
so 6 = /4 or 57/4. Since x > 0, we must have § = m/4. The spherical
coordinates of Q are [2, /4, w/4].

|

Remark You may wonder why we write spherical coordinates in the order p, ¢, 0
rather than p, 6, ¢. The reason, which will not become apparent until Chapter 16, is
so that the triad of unit vectors at any point P pointing in the directions of increasing
0, increasing ¢, and increasing 8 form a right-handed basis rather than a left-handed
one.

The volume element in spherical coordinates is
dV = p* singdpde do.

To see this, observe that the infinitesimal coordinate box bounded by the coordinate
surfaces corresponding to values p, p+dp, ¢, ¢ +d ¢, 6, and 6 +d6 has dimensions
dp, pd¢, and psingdf. (See Figure 14.44.) Alternatively, the Jacobian of the
transformation can be calculated:

singgcosf pcosgpcosd —psingsind
d(x,y,2) L ) .
o b8 singsinf pcosgsingd psingcosé
(0. ¢.6) cos ¢ —psing 0

=cos¢

pcos¢pcosd —psingsing
pcos¢gsinf  psingcosé

sin¢cos@ —psingsiné

+psing singgsing  psin¢ cosd

= cos ¢ (p* sin ¢ cos @) + psin @ (p sin® ¢)
= p?sing.
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Figure 14.44 The volume element
in spherical coordinates

p singdé

/
0 do
Y

X

Spherical coordinates are suited to problems involving spherical symmetry and, in
particular, to regions bounded by spheres centred at the origin, circular cones with
axes along the z-axis, and vertical planes containing the z-axis.

(' INE A solid half-ball H of radius a has density depending on the distance
p from the centre of the base disk. The density is given by k(2a — p), where k is a
constant. Find the mass of the half-ball.

Solution Choosing coordinates with origin at the centre of the base, and so that
the half-ball lies above the xy-plane, we calculate the mass m as follows:

msz/ k(2a—,o)dV=/// k(2a — p) p*singp dp d¢ db
H H

2 7/2 a
:k/ d@f sin¢d¢/ Qa — p) p*dp
0 0 0

a

5 4
= —mka” units.

2a 1
=2k x1x (?p3——p4) 6
0

4

__m

Remark In the above example both the integrand and the region of integration
exhibited spherical symmetry, so the choice of spherical coordinates to carry out the
integration was most appropriate. The mass could have been evaluated in cylindrical
coordinates. The iteration in that system is

2 a A at—r?
m:f de / rdr / kQa—Vrt+z9dz
0 4] (¢}

and is much harder to evaluate. It is even more difficult in Cartesian coordinates:

a N NZom—
m=4/ dx/ dyf k(2a — /x2 + y2 +22) dz.
0 0 0

The choice of coordinate system can greatly affect the difficulty of computation of
a multiple integral.




Figure 14.45 A solid ball with a
cylindrical hole through it
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Many problems will have elements of spherical and axial symmetry. In such
cases it may not be clear whether it would be better to use spherical or cylindrical
coordinates. In such doubtful cases the integrand is usually the best guide. Use
cylindrical or spherical coordinates according to whether the integrand involves
X2 4 y2orx? +y? + 22

<]

The moment of inertia about the z-axis of a solid of density &
occupying the region R is given by the integral

1= f/ (x24+yHsdV.
R

(See Section 14.7.) Calculate that moment of inertia for a solid of unit density
occupying the region inside the sphere x> + y? + z> = 4a” and outside the cylinder
2432 = al.

Solution See Figure 14.45. In terms of spherical coordinates the required mo-
ment of inertia is

2m /2 2a
1:2/ dG/ sin¢d¢/ p?sin® ¢ p*dp.
0 /6 a/sing

In terms of cylindrical coordinates it is

2 2a N 4a?—r?
I=2/ dO] rdr/ rldz.
0 a 0

The latter formula looks somewhat easier to evaluate. We continue with it. Evalu-
ating the 6 and z integrals, we get

2a
I =4x r*V4a? —r2dr.
a

Making the substitution u# = 4a% — r?, du = —2r dr, we obtain
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3a? u u5/2
I:27T/ (4a2—u)ﬁdu:2n(4 2_____)
0

|Exercises 14.6

1.

Convert the spherical coordinates [4, /3, 27 /3] to
Cartesian coordinates and to cylindrical coordinates.

. Convert the Cartesian coordinates (2, —2, 1) to cylindrical

coordinates and to spherical coordinates.

. Convert the cylindrical coordinates {2, /6, —2] to

Cartesian coordinates and to spherical coordinates.

. A point P has spherical coordinates [1, ¢, 0] and cylindrical

coordinates [r, /4, r|. Find the Cartesian coordinates of the
point.

Describe the sets of points in 3-space that satisfy the equations in
Exercises 5-14. Here, r, 6, p, and ¢ denote the appropriate
cylindrical or spherical coordinates.

S.
7.
9.
11.

13.
InE

15.

16.

17.

18.

19.

20.

21,

* 22,

23.

0=m/2 6. ¢ =27/3
¢ =m/2 8. p=4
r=4 10. p =z
po=r 12. p =2x
p =2cos¢ 14. r =2cos0

xercises 15-23, find the volumes of the indicated regions.
Inside the cone z = /x2 + y? and inside the sphere
X2yl + 2 =d?

Above the surface z = (x2 4 y2)1/* and inside the sphere
Py 4i=2

Between the paraboloids z = 10 — x2 — yZ and
t=207+y - D)

Inside the paraboloid z = x2 + y? and inside the sphere
Xyt =12

Above the xy-plane, inside the cone 7z = 2a — /x2 + y2,
and inside the cylinder x> + y2 = 2ay

Above the xy-plane, under the paraboloid z = 1 — x2 — y2,
and in the wedge —x < y < V3x

In the first octant, between the planes y = 0 and y = x, and

o x2 V2 Z2
inside the ellipsoid ) + b—2 + 3= 1. Hint: use the
change of variables suggested in Example 1.
x2 y2 Z2
Bounded by the hyperboloid — + 5 — 5 =1landthe
a »r 2

planes ; = —cand z = ¢

Above the xy-plane and below the paraboloid

]

z=1-—

2,05
)<

24.

25.

26.

27.

28.

29.

30.

= 31.

* 32,

* 33,

Evaluate / f (2 + y* + %) dV, where R is the cylinder
R
0<x’+y?<a’,0<z<h
Find // %+ yz) dV, where B is the ball given by
B
4yr4? <at
Find / f (x% + y* +z%)dV, where B is the ball of
Exercise 2?.

Find /f (x2 + y2 + zz) dV, where R is the region that
R

lies above the cone z = ¢+/x2 + y2 and inside the sphere
24y 42 =a2

Evaluate f / =+ yz) dV over the region R of
R

Exercise 27.

Find / / / zdV, over the region R satisfying
R

24y <z<J2-x2—y2

Find ff/ xdV and f// zdV, over that part of the
R R

hemisphere 0 < z < /a2 — x2 — y? that lies in the first

octant.

Find f// xdV,and f/f zdV over that part of the cone
R R

OEZSh(l—
a

that lies in the first octant.

Find the volume of the region inside the ellipsoid
222
;7—1— 7 + 2= 1 and above the plane z = b — y.
Show that for cylindrical coordinates the Laplace equation
u % 8%
_ —_—  — = 0
ax2 ' 9y?  9z2
is given by
?u 1 9u 1 2%u  9%u —0
a2 rar r2 962 92 T



=34, Show that in spherical coordinates the Laplace equation is

given by

2u 2 0u cotg du 1

8%u
w2 pop p> B¢ p? 0¢?
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(u, v, w), show that they map an infinitesimal volume
element in uvw-space bounded by the coordinate planes u,
u+du, v, v+dv, w, and w + dw into an infinitesimal
“parallelepiped” in xyz-space having volume

2 alx,y,
1 3”:0 dxdydzz‘_m
p%sin? ¢ 862 ‘ o(u, v, w) -
Hint: adapt the two-dimensional argument given in
Section 14.4. What three vectors from the point

du dvdw.

#35. If x, y, and z are functions of u, v, and w with continuous P = (x(u, v, w), y(u, v, w), z(u, v, w)) span the
first partial derivatives and nonvanishing Jacobian at parallelepiped?

When we express the volume V of a region R in 3-space as an integral,

o

we are regarding V as a “sum” of infinitely many infinitesimal elements of volume,
that s, as the limit of the sum of volumes of smaller and smaller nonoverlapping sub-
regions into which we subdivide R. This idea of representing sums of infinitesimal
elements of quantities by integrals has many applications.

For example, if a rigid body of constant density § g/cm’ occupies a vol-
ume V cm?’, then its mass is m = 8V g. If the density is not constant but
varies continuously over the region R of 3-space occupied by the rigid body, say
3§ = 8(x,y, z), we can still regard the density as being constant on an infinites-
imal element of R having volume dV. The mass of this element is therefore
dm = §(x,y,z)dV, and the mass of the whole body is calculated by integrating
these mass elements over R:

mszf 8(x,y,2)dV.
R

Similar formulas apply when the rigid body is one- or two-dimensional, and its
density is given in units of mass per unit length or per unit area. In such cases single
or double integrals are needed to sum the individual elements of mass. All this
works because mass is “additive,” that is, the mass of a composite object is the sum
of the masses of the parts that comprise the object. The surface areas, gravitational
forces, moments, and energies we consider in this section all have this additivity

property.

The Surface Area of a Graph

We can use a double integral over a domain D in the xy-plane to add up surface
area elements and thereby calculate the total area of the surface S with equation
z = f(x,y) defined for (x,y) in D. We assume that f has continuous first
partial derivatives in D, so that S is smooth and has a nonvertical tangent plane at
P = (x,y, f(x,y)) forany (x, y) in D. The vector

n= _fl(xvy)i_fZ(x’ Y)j+k

is an upward normal to S at P. An areaelementd A at position (x, y) in the xy-plane
has a vertical projection onto S whose area d S is sec y times the area d A, where y
is the angle between n and k. (See Figure 14.46.)
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15 S p LIeS 68 1t gy s i prayseesaas .
d A onto the xy-plane X
Since
cosy = nek _ 1
KL 14 (A ) + ()
we have

2 2
dS = 1+ % +(§E dA.
dx ay

Therefore, the area of S is

= ffoe Y

m Find the area of that part of the hyperbolic paraboloid z = x% — y?
that lies inside the cylinder x> + y? = a?.

Solution Since 3z/3dx = 2x and 9z/dy = —2y, the surface area element is

dS=+1+4x2+4y2dA =1 +4rrdrdb.

The required surface area is the integral of dS over the disk » < a:

2w a
S = / dé / V1+4rirdr (Letu = 1 4+ 4r2).
0 0

144a?

=(2JT)l ﬁdu
8 Ji

m 2 32
'4(3>”

14+4a> T
=% ((1 +4a*)?* — 1) square units.

1




Figure 14.47 Each mass element
o d A attracts m along a different line
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The Gravitational Attraction of a Disk
Newton’s universal law of gravitation asserts that two point masses m1; and ma,
separated by a distance s, attract one another with a force

km
F= 1ms

»

$2
k being a universal constant. The force on each mass is directed toward the other,
along the line joining the two masses. Suppose that a flat disk D of radius a,
occupying the region x> 4+ y? < a® of the xy-plane, has constant areal density o
(units of mass per unit area). Let us calculate the total force of attraction that this
disk exerts upon a mass m located at the point (0, 0, b) on the positive z-axis. The
total force is a vector quantity. Although the various mass elements on the disk are
in different directions from the mass m, symmetry indicates that the net force will
be in the direction toward the centre of the disk, that is, toward the origin. Thus,
the total force will be — Fk, where F is the magnitude of the force.

We will calculate F by integrating the vertical component d F' of the force of
attraction on m due to the mass ¢ d A in an area element d A on the disk. If the area
element is at the point with polar coordinates [r, 8], and if the line from this point to
(0, 0, b) makes angle i with the z-axis as shown in Figure 14.47, then the vertical
component of the force of attraction of the mass element o 4A on m is

g kmoda — tmep A
= g o Y = kmo WS

2+ b2

X

Accordingly, the total vertical force of attraction of the disk on m is

dA
Fetnot || e

2 a
rdr
_ .2
= kmob /0 do /0 RS (Letu = r? + b%).

a’+p?
=nwkmob / w3 du
b

s

a*+b?

b
=2mkmo (1 — ——— ).
» ( va2+b2>
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Remark 1If we let a approach infinity in the above formula, we obtain the formula
F = 2mkmo for the force of attraction of a plane of areal density ¢ on a mass m
located at distance b from the plane. Observe that F does not depend on b. Try to
reason on physical grounds why this should be so.

Remark The force of attraction on a point mass due to suitably symmetric solid
objects (such as balls, cylinders, and cones) having constant density § (units of mass
per unit volume) can be found by integrating elements of force contributed by thin,
disk-shaped slices of the solid. See Exercises 14—17 below.

Moments and Centres of Mass

The centre of mass of a rigid body is that point (fixed in the body) at which the
body can be supported so that in the presence of a constant gravitational field it
will not experience any unbalanced torques that will cause it to rotate. The torques
experienced by a mass element dm in the body can be expressed in terms of the
moments of dm about the three coordinate planes. If the body occupies a region
R in 3-space and has continuous volume density §(x, v, z), then the mass element
dm = 8(x, y, z) dV that occupies the volume element d'V is said to have moments
(x — x9)dm, (y — yo) dm, and (z — zo) dm about the planes x = xg, ¥y = yp, and
Z = zo, respectively. Thus, the total moments of the body about these three planes

are
Mi,_, = f/f (x —x0)8(x,y,2)dV = M,—g — xom

R
My_y, = // (y —y0)8(x,y,2)dV = M,—g — yom

R

M-, = f/ (z—20)8(x,y,2)dV = M—o — zom,
R

where m = ﬂTR 8dV is the mass of the body and M,—, M,_y, and M,_ are the
moments about the coordinate planes x = 0, y = 0, and z = 0, respectively. The
centre of mass P = (&, ¥, z) of the body is that point for which M,_z, M,_;, and
M, _; are all equal to zero. Thus,

Centre of mass

The centre of mass of a solid occupying region R ‘of 3-space and having
continuous density é(x, y, z) (units of mass per.unit volume) is the point
(x, ¥, 2) with coordinates given by

wa_Jl[me L [l
" /f/adv f//adv
i M

ffj};adv

These formulas can be combined into a single vector formula for the position vector
r = xi+ yj+zk of the centre of mass in terms of the position vectorr = xi+yj+zk
of an arbitrary point in R,

Ni




Figure 14.48 Iteration diagram for a
triple integral over the tetrahedron of
Example 2
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. . drdVv
Mol + My—0j + Mok _ /.//R i

" e

where the integral of the vector function 8 r is understood to mean the vector whose
components are the integrals of the components of S r.

r=

Remark Similar expressions hold for distributions of mass over regions in the
plane or over intervals on a line. We use the appropriate areal or line densities and
double or single definite integrals.

Remark If the density is constant, it cancels out of the expressions for the centre
of mass. In this case the centre of mass is a geometric property of the region R and
is called the centroid or centre of gravity of that region.

Find the centroid of the tetrahedron T bounded by the coordinate
planes and the plane

Y

ai
a b

+i=1

¢
Solution The density is assumed to be constant, so we may take it to be unity.
The mass of T is thus equal to its volume: m = V = abc/6. The moment of T
about the yz-plane is (see Figure 14.48):
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szo:/ffde
T
a b(1-%) c(1-2-1) .
=/ xdx/ dy/ dz
0 0 0
a b(1-%) x y
C/o xdx/0 (1 - b)dy
a

2 p=b(-5
=cfxl:(1—£ y—y—] dx
0 a 2b y=0

be [ 2
== [ x(1-2) ax

2 0 a

be[x? 2x3 N 1 a’be
T 212 3a  4a?)l, 24°

b y
Thus x = M,.o/m = a/4. By symmetry, the centroid of T is (% h %)
||

Find the centre of mass of a solid occupying the region S that
satisfiesx > 0,y > 0,z > 0, and X2+ y2 + 72 < 42, if the density at distance p
from the origin is kp.

Solution The mass of the solid is distributed symmetrically in the first octant part
of the ball p < a so that the centre of mass, (x, y, z), must satisfy x = y = z. The
mass of the solid is

/2 /2 a nka4
m=///kpdV=/ dO/ sin¢d¢/ (kp)p*dp = .
s 0 0 0 8

The moment about the x y-plane is

M,._p =///zkpdv =//f(kp)pcosd)pzsinqbdpdd)dQ
s s

k n/2 /2 a k]'[as
=— de in(2 Ydp = )
2f0 /0 sin( ¢>>d¢>fo phdp =28

. kmna® [kwa* 2a . (2a 2a 2a
Hence, z = = — and the centre of massis | —, —, — |.
20 8 5 555

Moment of Inertia
The Kkinetic energy of a particle of mass m moving with speed v is

1 2
KE = —mv”.
2

The mass of the particle measures its inertia, which is twice the energy it has when
its speed is one unit.

If the particle is moving in a circle of radius D, its motion can be described in
terms of its angular speed, 2, measured in radians per unit time. In one revolution



Figure 14.49 The actual velocity
and the vertical velocity of a ball rolling
down an incline as in Example 4
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the particle travels a distance 2 D in time 27 /€. Thus, its (translational) speed v
is related to its angular speed by

v=QD.

Suppose that a rigid body is rotating with angular speed €2 about an axis L. If (at
some instant) the body occupies a region R and has density 6 = §(x, v, z), then
each mass element dm = § dV in the body has kinetic energy

1 1
dKE = 3 v dm = 5 s§Q’D* 4V,

where D = D(x, y, z) is the perpendicular distance from the volume element 4V
to the axis of rotation L. The total kinetic energy of the rotating body is therefore

1 1
KE:—QZ// D*sdV = - I1Q?,
2 R 2

where

1 -_~fffg D*sdv.

I is called the moment of inertia of the rotating body about the axis L. The moment
of inertia plays the same role in the expression for kinetic energy of rotation (in
terms of angular speed) that the mass does in the expression for kinetic energy of
translation (in terms of linear speed). The moment of inertia is twice the kinetic
energy of the body when it is rotating with unit angular speed.

If the entire mass of the rotating body were concentrated at a distance Dy from
the axis of rotation, then its kinetic energy would be 1mD3Q?. The radius of

gyration D is the value of Dy for which this energy is equal to the actual kinetic
energy 5 1Q? of the rotating body. Thus, m D? = I and the radius of gyration is

" j/ D*sdv
( /f[adv )
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1YW (The acceleration of a rolling ball)

(a) Find the moment of inertia and radius of gyration of a solid ball of radius a and
constant density & about a diameter of that ball.

(b) With what linear acceleration will the ball roll (without slipping) down a plane
inclined at angle & to the horizontal?

Solution

(a) We take the z-axis as the diameter and integrate in cylindrical coordinates over
the ball B of radius a centred at the origin. Since the density § is constant, we
have

I=s / / / 2 av
27 a2~r2
_8/ d@/ r dr/
/az_rz
=478 / r3Va? —r2dr (Letu = a? — r2.).
oa2
=278 / (a*> — u)/udu
0
8

2
2 2 “
=2rd (—a2u3/2 — —u5/2) = — nda’.
3 5 0 15

Since the mass of the ball is m = % wda’, the radius of gyration is

(b) We can determine the acceleration of the ball by using conservation of total
(kinetic plus potential) energy. When the ball is rolling down the plane with
speed v, its centre is moving with speed v and losing height at a rate v sin .
(See Figure 14.49.) Since the ball is not slipping, it is rotating about a horizontal
axis through its centre with angular speed Q = v/a. Hence its kinetic energy
(due to translation and rotation) is

1 1
KE=5mU2+§IQZ

When the centre of the ball is at height /2 (above some reference height) the
ball has (gravitational) potential energy

PE = mgh.

(This is the work that must be done against a constant gravitational force
F = mg to raise it to height /.) Since total energy is conserved,

7
T mv* + mgh = constant,

Differentiating with respect to time z, we obtain
7 dv dh 7 dv
m -

v — —mgusina.

dt
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Surface area problems
Use double integrals to calculate the areas of the surfaces in
Exercises 1-9.
1. The part of the plane z = 2x + 2y inside the cylinder
x4+ y2 =1
2. The part of the plane 5z = 3x — 4y inside the elliptic
cylinder x2 4 4y2 =4

. The hemisphere z = /a2 — xZ — y2

. The half-ellipsoidal surface 7 = 2,/1 — x2 — y2

. The conical surface 372 = x? + 2,0 <z <2
. The paraboloid z = 1 — x? — y? in the first octant

NS N W

. The part of the surface z = yZ above the triangle with
vertices (0, 0), (0, 1), and (1, 1)
8. The part of the surface z = /x above the region0 <x <1,
O<y<x
9. The part of the cylindrical surface x2 + z> = 4 that lies
above theregion0 <x <2,0<y <x
10. Show that the parts of the surfaces z = 2xy and z = x? + y?
that lie in the same vertical cylinder have the same area.

. Show that the area S of the part of the paraboloid

o= %()c2 + yz) lying above the square —1 < x < 1,

—1 <y < 1is given by

g (™4 2
sz_/ <1+sec29)3/2d9—7”,
0

and use numerical methods to evaluate the area to 3 decimal
places.

# 12, The canopy shown in Figure 14.50 is the part of the
hemisphere of radius /2 centred at the origin that lies above
the square —! <x <1, —1 < y < 1. Find its area. Hint: it
is possible to get an exact solution by first finding the area of
the part of the sphere x2 + y2 4 72 = 2 that lies above the
plane z = 1. If you do the problem directly by integrating
the surface area element over the square, you may encounter
an integral that you can’t evaluate exactly, and you will have
to use numerical methods.

.
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Figure 14.50

Mass and gravitational attraction

13. Find the mass of a spherical planet of radius a whose density
at distance R from the centreis 6 = A/(B + R?).

In Exercises 14—17, find the gravitational attraction that the given
object exerts on a mass m located at (0, 0, b). Assume the object
has constant density é. In each case you can obtain the answer
by integrating the contributions made by disks of thickness dz,
making use of the formula for the attraction exerted by the disk
obtained in the text.

14. The ball x2 + y2 + 72 < a’, where a < b
15. The cylinder x4 y2 <a2,0 <z<h,whereh < b

16. Thecone 0 < z < b — (/x2 + y?)/a

17. The half-ball 0 < 7z < \/a%? — x? — y2, wherea < b

Centres of mass and centroids

18. Find the centre of mass of an object occupying the cube
0 < x, y, z < a with density given by § = x2 + y> + z2.

Find the centroids of the regions in Exercises 19-22.

19. Theprismx >0,y >0, x+y<1,0=<z <1

20. The unbounded region 0 < z < e~ ¢’

21. The first octant part of the ball x2 + y? + 72 < 4

22. The region inside the cube 0 < x, y, z < 1| and under the
planex +y+z =2

Moments of inertia

23. Explain in physical terms why the acceleration of the ball
rolling down the incline in Example 4 does not approach g
(the acceleration due to gravity) as the angle of incline, o,
approaches 90°.

Find the moments of inertia and radii of gyration of the solid
objects in Exercises 24—-32. Assume constant density in all cases.

24. A circular cylinder of base radius a and height 4 about the
axis of the cylinder

25. A circular cylinder of base radius a and height 4 about a
diameter of the base of the cylinder

26. A right circular cone of base radius @ and height i about the
axis of the cone

27. A right circular cone of base radius a and height /1 about a
diameter of the base of the cone

28. A cube of edge length a about an edge of the cube

29. A cube of edge length a about a diagonal of a face of the
cube

30. A cube of edge length a about a diagonal of the cube

31. Therectangularbox —a < x <a,—-b <y <b,—c<z<c
about the z-axis

32. The region between the two concentric cylinders
x2 4+ 2 =a? and x? + y? = b? (where 0 < a < b) and
between z = 0 and z = ¢ about the z-axis
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33.

35.

= 36.
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A ball of radius a has constant density 8. A cylindrical hole

d PLUC HHCW at anmgic o’ wowsd abcutag . £ - 211 T

Repeat Exercise 34 for the ball with the cylindrical hole in
Exercise 33. Assume that the axis of the hole remains
horizontal while the ball rolls.

A rigid pendulum of mass m swings about point A on a
horizontal axis. Its moment of inertia about that axis is 1.
The centre of mass C of the pendulum is at distance a from
A. When the pendulum hangs at rest, C is directly under A.
(Why?) Suppose the pendulum is swinging. Let @ = 6(¢)
measure the angular displacement of the line AC from the
vertical at time ¢. (6 = 0 when the pendulum is in its rest
position.) Use a conservation of energy argument similar to
that in Example 4 to show that

2

l L
~1 (—) — mga cos € = constant
>\ g

and. hence, differentiating with respect to ¢, that

40 N mga

dr? 1
This is a nonlinear ditfferential equation, and it is not easily
solved. However, for small oscillations (|¢| small) we can
use the approximation sin6 2 6. In this case the differential
equation is that of simple harmonic motion. What is the
period?

sing = 0.

* 37,

* 38,

* 39,

Let Lg be a straight line passing through the centre of mass
~f avivid hndu B af macce T ot T4 he a straioht line

passes through the point (k, 0, 0).

Reestablish the expression for the total kinetic energy of the
rolling ball in Example 4 by regarding the ball at any instant
as rotating about a horizontal line through its point of contact
with the inclined plane. Use the result of Exercise 37.

(Products of inertia) A rigid body with density § is placed

with its centre of mass at the origin and occupies a region R
of 3-space. Suppose the six second moments Pyy, Pyy, P,
Pyy. Py, and Py, are all known, where

xx:/// x28dv, PX}.=/f/ xy8dV,
R R

(There exist tables giving these six moments for bodies of
many standard shapes. They are called products of inertia.)
Show how to express the moment of inertia of the body
about any axis through the origin in term of these six second
moments. (If this result is combined with that of

Exercise 37, the moment of inertia about any axis can be
found.)

Chapter Review |

Key Ideas

e What do the following terms and phrases mean?

<&
&
&
<
<&
<
&
<
<&
<&
<

a Riemann sum for f(x.yv)ona <x <b,c<y<d
Sy, y)isintegrableona < x <b,c <y <d

the double integral of f(x, y)overa <x <b,c <y <d
iteration of a double integral

the average value of f(x, y) over region R

the area element in polar coordinates

a triple integral

the volume element in cylindrical coordinates

the volume element in spherical coordinates

flxoy

the moment of inertia of a solid about an axis

the surtace area of the graph of z =

e Describe how to change variables in a double integral.

o How do you calculate the centroid of a solid region?

e How do you calculate the moment of inertia of a solid about

an axis?

Review Exercises

1.

Evaluate / (x +y) d A, over the first-quadrant region lying
R

under x = y? and above y = xZ.

. Evaluate f (x2 + y2) dA, where P is the parallelogram
P

with vertices (0, 0), (2,0), (3, 1), and (1, 1).
Find/ (y/x)dA, where S is the part of the disk x2 432 < 4
S

in the first quadrant and under the line y = x.

Consider the iterated integral

4\~
I—/ dyf == gy
y




10.

11.

12.

13.

14,

(a) Write / as a double integral e Y dA, and sketch

R
the region R over which the double integral is taken.

(b) Write / as an iterated integral with the order of integra-
tions reversed from that of the given iteration.

(¢) Write / as an iterated integral in polar coordinates.
(d) Evaluate I.

. Find the constant k > 0 such that the volume of the region

lying inside the sphere x? + y% +z2 = a? and above the cone
o = k+/x2 4+ y? is one-quarter of the volume contained by
the whole sphere.

. Reiterate the integral

2 ¥ 6 o6y
12/ dY/ f(x,y)dx+/ dyf fx, yydx
0 0 2 0

with the y integral on the inside.

! z y
. LetJ 2/ dz / dy / f(x, y,z)dx. Express J as an
0 0

0
iterated integral where the integrations are to be performed in
the following order: first z, then y, then x.

. An object in the shape of a right-circular cone has height 10 m

and base radius 5 m. Its density is proportional to the square
of the distance from the base and equals 3,000 kg/m3 at the
vertex.

(a) Find the mass of the object.

(b) Express the moment of inertia of the object about its
central axis as an iterated integral.

a
. Find the average value of f(1) = f ¢ dx over the inter-
t

val0 <t < a.

Find the average value of the function f(x,y) = [x + y]
over the quarter-disk x > 0, y > 0, x4+ y2 < 4. (Recall that
| x] denotes the greatest integer less than or equal to x.)

Let D be the smaller of the two solid regions bounded by the
surfaces
X7+ y2

z= and x2+y2+22=6a2,
a

where « is a positive constant. Find /f (x? + yz) dav.
D

Find the moment of inertia about the z-axis of a solid V of
density 1 it V is specified by the inequalities
0 <z</x2+ y?2and x2 + y2 < 2ay, where a > 0.

The rectangular solid 0 < x < 1,0 <y <2, 0=<z<1lis
cut into two pieces by the plane 2x + y +z = 2. Let D be
the piece that includes the origin. Find the volume of D and
=, the z-coordinate of the centroid of D.

A solid S consists of those points (x, y, z) that lie in the first
octant and satisfy x + y +2z <2 and y + z < 1. Find the
volume of § and the x-coordinate of its centroid.

15.

16.

g 1.

= 18.
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Find / / / zdV, where § is the portion of the first octant that
N

is above the plane x +y —z = 1 and below the plane z = 1.

Find the area of that part of the plane z = 2x that lies inside
the paraboloid z = x> + y2.

Find the area of that part of the paraboloid z = x% + y? that
lies below the plane z = 2x. Express the answer as a single
integral and evaluate it to 3 decimal places.

Find the volume of the smaller of the two regions into which
the plane x + y + z = 1 divides the interior of the ellipsoid
x2 +4y2 + 922 = 36. Hint: first change variables so that the
ellipsoid becomes a ball. Then replace the plane by a plane
with a simpler equation passing the same distance from the
origin.

Challenging Problems

1.

The plane (x/a) + (y/b) + (z/c) = 1 (wherea > 0, b > 0,
and ¢ > 0) divides the solid ellipsoid

2 2 2
X y Z
pel + 2 + ) =1
into two unequal pieces. Find the volume of the smalier

piece.

. Find the area of the part of the plane (x /a) + (y/b) + (z/c) =1

(where a > 0, b > 0, and ¢ > 0) that lies inside the ellipsoid

. (a) Expand 1/(1—xy) as a geometric series, and hence show

that

o0

dxdy:Z;li.

n=1

[
o Jo l—xy

(b) Similarly, express the following integrals as sums of
series:

Loy
@ /0/0 1+ xy
1 p1opl
w [ [ [+

o Jo Jo 1—xyz
1,1 pl
o [ 1]
o Jo Jo 1+xyz

dxdy,

dxdydz,

dxdydz.

. Let P be the parallelepiped bounded by the three pairs of

parallel planes aer = 0, aer = d; > 0, ber = 0,
ber=4d; >0,cer=0,andcer = d3 > 0, where a, b,
and ¢ are constant vectors, and r = xi + yj + zk. Show that

(didrd3)?

/f P(a-r)(b.r)(c-r)dxdydz = m
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Hini: make the change of variables 4 = aer, v = ber, *
w=-Ccer.

5. A hole whose cross-section is a square of side 2 is punched =
through the middle of a ball of radius 2. Find the volume of
the remaining part of the ball.

6. Find the volume bounded by the surface with equation
X213 Y23 4 23 = 23,

7. Find the volume bounded by the surface
I3 1 4 1212 = al




