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CHAPTER 16

Vector Calculus

Introduction 1In this chapter we develop two- and three-dimensional analogues
of the one-dimensional Fundamental Theorem of Calculus. These analogues—
Green’s Theorem, Gauss’s Divergence Theorem, and Stokes’s Theorem—are of
great importance both theoretically and in applications. They are phrased in terms of
certain differential operators, divergence and curl, which are related to the gradient
operator encountered in Section 12.7. The operators are introduced and their
properties are derived in Sections 16.1 and 16.2. The rest of the chapter deals with
the generalizations of the Fundamental Theorem of Calculus and their applications.

First-order information about the rate of change of a 3-dimensional scalar field,
f(x,vy,2), is contained in the three first partial derivatives df/dx, df/dy, and
df/0z. The gradient,

, ' : ar . 8f. 9
grad f(x,y,7) = Vf(x,y,2) = —fl+ —fJ+ —fk,
; , ax dy 9z

collects this information into a single vector-valued “derivative” of f. We would
like to develop similar ways of conveying information about the rate of change of
vector fields.

First-order information about the rate of change of the vector field
Flx,y,2) = Filx,y, i+ F2(x, ¥, 2)j + F3(x, y, 2k

is contained in nine first partial derivatives, three for each of the three components
of F:

Lhay If IF
ax dy 0z
9F; 9k 253
ax dy az
aF; dF3 9F;
ax dy az

(Again, we stress that Fy, F,, and F3 denote the components of F, not partial
derivatives.) Two special combinations of these derivatives organize this informa-
tion in particularly useful ways, as the gradient does for scalar fields. These are the
divergence of F (div F) and the curl of F (curl F), defined as follows:
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Do not confuse the scalar field
V e F with the scalar differential
operator F ¢ V. They are quite
different objects.

Divergence and curl

aF,  dF
divF=VeF= 201 [ 3 OF
ax ay 0z

curlF = VXF
aFs - aF Yy, oF  aFs\ . aF, OF;
- (5% -5 (-5 (-5
i j Kk
g 3 a3
= H W FZ— .
Fi Il K

Note that the divergence of a vector field is a scalar field, while the curl is another
vector field. Also observe the notation Ve F and VX F, which we will sometimes
use instead of div F and curl F. This makes use of the vector differential operator

3.7 9
Vz._' j— k"'""
1o Ty T ha;

frequently called del or nabla. Just as the gradient of the scalar field f can be
regarded as formal scalar multiplication of Vand f, so also can the divergence and
curl of F be regarded as formal dot and cross products of V with F. When using
V the order of “factors” is important; the quantities on which V acts must appear
to the right of V. For instance, Ve F and F ¢ V do not mean the same thing; the
former is a scalar field and the latter is a scalar differential operator:

a d d
FeV=F —+F —+F; —.
¢ 13x+ 28y+ > 3z

m Find the divergence and curl of the vector field
F

=xyi+ (?—z29j + yzk.

Solution We have

) 3 3 3
divF =VeF=—(y)+ —0> -2+ —(2)=y+2y +y =4y,
dax dy az

i j k
wrlF=VxF=|z% & &
xy y2—-72 yz
[3<) 8(2 2)'+a() a( j
= e _— — —_ 1 _ _——
3y ya) = 5707 =2 3z Xy) = o5 Y |J

3 3
+ [—(y2 — 75— —(xy)] k = 3zi — xk.
ax dy

B

The divergence and curl of a two-dimensional vector field can also be defined: if
F(x, y) = Fi(x, y)i+ Fa(x, y)j, then
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. 3F; - 9F;
divF = % + By
aF, afF;
1F={—=—~ — Kk
cur (ax 3y )

Note that the curl of a two-dimensional vector field is still a 3-vector and is perpen-
dicular to the plane of the field. Although div and grad are defined in all dimensions,
curlis defined only in three dimensions and in the plane (provided we allow values
in three dimensions).

IEET¥  Find the divergence and curl of F = xe”i — ye'j.
Solution We have
. d 9
divF =VeF = —(x&”) + —(—ye') = ¢’ — ¢*,
0x dy

d d
curl F = VxF = —(~ye") - —(xe>’)) K
0x dy

= —(ye* + xeM)k.

Interpretation of the Divergence

The value of the divergence of a vector field F at point P is, loosely speaking,
a measure of the rate at which the field “diverges” or “spreads away” from P.
This spreading away can be measured by the flux out of a small closed surface
surrounding P. For instance, divF(P) is the limit of the flux per unit volume out
of smaller and smaller spheres centred at P.

The divergence as flux density

If N is the unit outward normal on the sphere S, of radius € centred at point P, and
if F is a smooth three-dimensional vector field, then

. . 3 Q
leF(P) = Eli[{)l+ Z;t‘é—g -#g FeNdS.

PROOF Without loss of generality we assume that P is at the origin. We want
to expand F in a Taylor series about the origin (a Maclaurin series). As shown in
Section 12.9 for a function of two variables, the Maclaurin series for a scalar-valued
function of three variables takes the form

a a d
foovn =000+ w 2L, U
3% |(0,0,0 3Y l0.0.0) 32 10.0.0
where “- - . represents terms of second and higher degree in x, y, and z. If we apply

this formula to the components of F, we obtain

F(X,y,z)=F0+F1x+F2y+F3Z+... s
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. P

W = i‘(a,o,m - kgl * 3_};j * ?y_k) \(0,0,0)

F dF dF JIF
_ 9 =(—1—i+—3j+—3k)
©.0.0) 0z 0z a9z

Tz
again, the **- - - represents the second- and higher-degree terms in x, y, and z. The
unit normal on S is N = (xi + yj + zk) /e, so we have

F;

s

(0,0,0)

.1
FoN=—(F0oix FFoejy+Foekz
€

+Fieix>+F ejxy+F ekxz
+Feixy+F,0jy’+F,ekyz
+F3oixz+F3ojyz+F3.kZ2+...>_

We integrate each term within the parentheses over S.. By symmetry,

# de:ﬁ yd5=ﬁ zdS =0,

S. 5. S.

# xde:# xzdS:ﬁ yzdS =0.
5. Se Se

Also, by symmetry,

# xzds=# y2d5=# 22ds
S S Se

1 1 4
= - # x*+ y2 +29)dS = =(eH(dred) = —met,
3 JJs. 3 3
and the higher-degree terms have surface integrals involving €’ and higher powers.

Thus,

3
4l

ﬁ FeNdS=F ei+F,ej+Fiek+e(--)
Se

=VeF(0,0,0)+€(-)
— Ve F(0,0,0)

as € — 0T. This is what we wanted to show.

Remark The spheres S, in the above theorem can be replaced by other contracting
families of piecewise smooth surfaces. For instance, if B is the surface of a
rectangular box with dimensions Ax, Ay, and Az containing P, then

1 .
W F _ . R .
divF(P) M,Al;,rzilz-»O AxAyAz #3 FeNdS

See Exercise 12 below.
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Remark In two dimensions, the value div F(P) represents the limiting flux per
unit area outward across small, non-self-intersecting closed curves which enclose
P. See Exercise 13 at the end of this section.

Let us return again to the interpretation of a vector field as a velocity field of a
moving incompressible fluid. If the total flux of the velocity field outward across
the boundary surface of a domain is positive (or negative), then the fluid must be
produced (or annihilated) within that domain.

The vector field F = xi + yj + zk of Example 2 in Section 15.6 has constant
divergence, Ve F = 3. In that example we showed that the flux of F out of a certain
cylinder of base radius ¢ and height 2/ is 67 a*h, which is three times the volume
of the cylinder. Exercises 2 and 3 of Section 15.6 confirm similar results for the flux
of F out of other domains. This leads to another interpretation for the divergence;
divF(P) is the source strength per unit volume of F at P. With this interpretation,
we would expect, even for a vector field F with nonconstant divergence, that the
total flux of F out of the surface S of a domain D would be equal to the total source
strength of F within D, that is,

#FoNdS:// VeFdV.
S D

This is the Divergence Theorem, which we will prove in Section 16.4,

IEEEEN  Verity that the vector field F = mr/|r|*, due to a source of strength
m at (0, 0, 0), has zero divergence at all points in R® except the origin. What would
you expect to be the total flux of F outward across the boundary surface of a domain
D if the origin lies outside D? if the origin is inside D?

Solution Since

my . 2 2 2 2
F(X,y,Z)=r—3(xl+y,]+zk), where r? = x%+ y* + 2%,

and since dr/dx = x/r, we have

dF 3 (x> r’—3xr (%) r? —3x?

—_— = — —_ = = .

ox ax \rp3 " 6 " rd
Similarly,

dF; r? —3y? 0F3 r? —3z2

- =m-—— and o =m——

ay r 9z r

Adding these up, we get Ve F(x, v, z) = 0if r > 0.

If the origin lies outside the domain D, then the source density of F in D is
zero, so we would expect the total flux of F out of D to be zero. If the origin lies
inside D, then D contains a source of strength m (producing 47 m cubic units of
fluid per unit time), so we would expect the flux out of D to be 47m. See Example
1 and Exercises 9 and 10 of Section 15.6 for specific examples.
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n/2

y =dy(x)

area 1

X

n n
Figure 16.1 The functions d,, (x)

converge to §(x) as n — 00

NITION n

Distributions and Delta Functions

If £(x) represents the line density (mass per unit length) of mass distributed on the
x-axis, then the total mass so distributed is

m= /00 £(x)dx.

[e¢]

Now suppose that the only mass on the axis is a “point mass” m = 1 located at the
origin. Then at all other points x # 0, the density is £(x) = 0, but we must still
have

[e.¢]
/ Lx)dx =m =1,
—C0

so £(0) must be infinite. This is an ideal situation, a mathematical model. No real
function £(x) can have such properties; if a function is zero everywhere except at
a single point, then any integral of that function will be zero. (Why?) (Also, no
real mass can occupy just a single point.) Nevertheless, it is very useful to model
real, isolated masses as point masses and to model their densities using generalized
functions (also called distributions).

We can think of the density of a point mass 1 at x = 0 as the limit of large
densities concentrated on small intervals. For instance, if

_[nj2 ifixl<1/n
d"(x)—{o if x| > 1/n

(see Figure 16.1), then for any smooth function f(x) defined on R we have
o0 n 1/n
/ o) fdx =2 [ foodx.
oo 2J m

Replace f(x) in the integral on the right with its Maclaurin series:

OO

= R 2 e
fx) =70+ T X+ T x*+ )
Since
/ . xFdx = { 2/((k + )n**1y if k is even
~1/n 0 if k is odd,

we can take the limit as # — oo and obtain

Tim f " @) £ dx = £(0).

The Dirac distribution 3 (x) (also called the Dirac delta function, aithough
it is really not a function) is the “limit” of the sequence d,(x) asn — co. It
is defined by the requirement that

f () fx)dx = f(0)

for every smooth function f(x).
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A formal change of variables shows that the delta function also satisfies

f G — D f () dt = fx).

o0

(3 ET AN In view of the fact that F(r) = mr/|r)? satisfies divF(x, y,z) =0
for (x, y, z) # (0, 0, 0) but produces a flux of 47 m out of any sphere centred at the

origin, we can regard divF(x, y, z) as a distribution
divF(x, y,z) = 4mrmd(x)8(y)3(z2).

In particular, integrating this distribution against f(x, y, z) = 1 over R®, we have

f// divF(x,y,z)dV:47tm/ S(x)dx/ 8(y)dy/ 8(2)dz
R3 —00 —00 —00

=4mm.

The integral can equally well be taken over any domain in R® that contains the
origin in its interior, and the result will be the same. If the origin is outside the
domain, the result will be zero. We will reexamine this situation after establishing
the Divergence Theorem in Section 16.4.

A formal study of distributions is beyond the scope of this book and is usually
undertaken in more advanced textbooks on differential equations and engineering
mathematics.

Interpretation of the Curl

Roughly speaking, curl F(P) measures the extent to which the vector field F
“swirls” around P.

m Consider the velocity field,

v = —Qyi+ Quxj,

of a solid rotating with angular speed €2 about the z-axis, that is, with angular
velocity £2 = QK. (See Figure 15.2 in Section 15.1.) Calculate the circulation of
this field around a circle C, in the xy-plane centred at any point (xo, yo), having
radius €, and oriented counterclockwise. What is the relationship between this
circulation and the curl of v?

Solution The indicated circle has parametrization
r = (X0 + € cost)i + (yo + € sint)j, 0O <t=<2m),

and the circulation of v around it is given by
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Figure 16.2

2
f vedr= / (—Q(yo + esint)(—e sint) + Q(xg + € cost)(€ cos t)) dt
Ce 0

2
= / (Qe(yo sint + xgcost) + Qez> dt
0

= 2Qme’.

Since
9 9
curlv = Vxv = (—(Qx) - —(—Qy))k = 20k = 202,
ax ay

the circulation is the product of (curl v) e k and the area bounded by C.. Note that
this circulation is constant for circles of any fixed radius; it does not depend on the

position of the centre.
—n

The calculations in the example above suggest that the curl of a vector field is a
measure of the circulation per unit area in planes normal to the curl. A more precise
version of this conjecture is stated in Theorem 2 below. We will not prove this
theorem now because a proof at this stage would be quite complicated. (However,
see Exercise 14 below for a special case.) A simple proof can be based on Stokes’s
Theorem. (See Exercise 13 in Section 16.5.)

The curl as circulation density

If F is a smooth vector field and C- is a circle of radius € centred at point P and
bounding a disk S, with unit normal N (and orientation inherited from C, — see
Figure 16.2), then

1 N
lim — % Fedr =Necurl F(P).
Ce
=

Example 5 also suggests the following definition for the local angular velocity of a
moving fluid:

The local angular velocity at point P in a fluid moving with velocity field
v(P) is given by

P = :;—curlv(P).

Theorem 2 states that the local angular velocity £2(P) is that vector whose com-
ponent in the direction of any unit vector N is one-half of the limiting circulation
per unit area around the (oriented) boundary circles of small disks centred at P and
having normal N.

Not all vector fields with nonzero curl appear to circulate. The velocity field
for the rigid body rotation considered in Example 5 appears to circulate around the
axis of rotation, but the circulation around a circle in a plane perpendicular to that
axis turned out to be independent of the position of the circle; it depended only
on its area. The circle need not even surround the axis of rotation. The following
example investigates a fluid velocity field whose streamlines are straight lines but
which still has nonzero, constant curl and, therefore, constant local angular velocity.



Figure 16.3
only carried along but is set rotating by
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The paddle wheel is not

the flow

Consider the velocity field v = xj of a fluid moving in the xy-

along the left side.

Example 6
plane. Evidently, particles of fluid are moving along lines parallel to the y-axis.

However, curl v(x, y) =k, and £2(x, y) = %k. A small “paddle wheel” of radius ¢
placed with its centre at position (x, y) in the fluid (see Figure 16.3) will be carried
along with the fluid at velocity xj but will also be set rotating with angular velocity
2(x,y) = %k, which is independent of its position. This angular velocity is due to
the fact that the velocity of the fluid along the right side of the wheel exceeds that

|Exercises 16.1

In Exercises 1-11, calculate divF and curl F for the given vector

fields.
1. F=xi+ yj 2. F=yi+xj
3. F=yi+zj+xk 4. F = yzi+ xzj + xyk
5. F = xi+xk 6. F = xy%i— y2j+ zx’k
T F=f@i+gMj+hk 8 F= f(2)i— f(2)j
9. F(r, 8) = ri+ sindj, where (r, #) are polar coordinates in

the plane
10. ¥ =t = cos #i + sin 6}
11. F =0 = —sin6i + cos j.
# 12. Let F be a smooth, 3-dimensional vector field. If B, p. is

the surface of the box —a < x <a,—b <y < b,
—c¢ < z < ¢, with outward normal N, show that

# FeNdS = VeF(0,0,0).
By b

8abc

1m
a,b,c—0t

*13.

* 14,

Let F be a smooth 2-dimensional vector field. If Ce is the
circle of radius ¢ centred at the origin, and N is the unit
outward normal to C., show that

F ¢ Nds = divF(0, 0).

. 1
lim —
e—>0t TE c
€

Prove Theorem 2 in the special case that C, is the circle in
the xy-plane with parametrization x = € cos 8,

y=-€sinf, (0 <6 <27). In this case N = k. Hint:
expand F(x, y, z) in a vector Taylor series about the origin
as in the proof of Theorem 1, and calculate the circulation of
individual terms around C,.
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There are numerous identities involving the functions

af . of . of
d s Y =V s Vo = =i A +-k7
grad f(x, y,2) fx,y,2) 8xl+ ay.l 3z
o F 0 F, 0F;
ivF(x,y,z)=VeF(x,y,2) = — 4+ — + —.
divF(x,y,2) eF(x,y,2) 8x+8y 3z
i j k
_ _|4d 4 3
curlF(x,y,z)—VxF(x,y,z)— X ay 9z |
FF B F

and the Laplacian operator, V> = Ve V, defined for a scalar field ¢ by

¢ 3% 3%
2 .
=VeVp=d d¢=——+—+—.
Vg o V¢ ivgrad ¢ 12 + o "oz

and for a vector field F = Fii + F»j + F3k by
VF = (V2F)i+ (V2 E)j+ (V2 F)k.

(The Laplacian operator, V2 = (8%/8x%) + (8%/8y?) + (82/3z%), is denoted by
A in some books.) Recall that a function ¢ is called harmonic in a domain D if
Vi =0 throughout D. (See Section 12.4.)

We collect the most important identities together in the following theorem.
Most of them are forms of the Product Rule. We will prove a few of the identities to
illustrate the techniques involved (mostly brute-force calculation) and leave the rest
as exercises. Note that two of the identities involve quantities like (G o V)F; this
represents the vector obtained by applying the scalar differential operator G ¢ Vto
the vector field F:

aF aF oF

G F=Gi— + G, — +G3 —.
GeW) 18x+ 28y+ 381

Vector differential identities

Let ¢ and i be scalar fields and F and G be vector fields, all assumed to be
sufficiently smooth that all the partial derivatives in the identities are continuous.
Then the following identities hold:

(@ Vigy) = ¢V + ¥ Vo

(b) Vo (¢F) = (Vo) e F+ ¢ (Ve F)

© VX(¢F) = (V) XF + ¢(VXF)

) Ve(FXG)=(VxF)eG—Fe(VXG)

(e) Vx(FXG) = (VeG)F+(Ge VF — (Ve F)G — (F e V)G
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(f) VF e G) =FX(VXG) +GX(VXF)+ (Fe V)G + (G ¢ V)F
(g Ve (VxF)y=0 (div curl = 0)
(h) Vx(¥Vg) =10 (curl grad = 0)

Q)  VX(VXF) =WV(VeF) - V°F
(curl curl = grad div — Laplacian)

Identities (a)—(f) are versions of the Product Rule and are first-order identities
involving only one application of V. Identities (g)—(i) are second-order identities.
Identities (g) and (h) are equivalent to the equality of mixed partial derivatives and
are especially important for the understanding of div and curl.

PROOF We will prove only identities (c), (e), and (g). The remaining proofs are
similar to these.

(c) The first component (i component) of VX (¢F) is
a¢p a¢ oF; aF,

0 0
5(¢F3)—5Z—(¢F2)=$F3—8—ZF2+¢?;—¢8—Z.

The first two terms on the right constitute the first component of (V¢) X F, and
the last two terms constitute the first component of ¢ (VX F). Therefore, the
first components of both sides of identity (c) are equal. The equality of the
other components follows similarly.

(e) Again, it is sufficient to show that the first components of the vectors on both
sides of the identity are equal. To calculate the first component of VX (F X G)
we need the second and third components of F X G, which are

(FXG)2=F3G1—F1G3 and (FXG)3=F1G2—F2G1.

The first component of VX (F X G) is therefore

d 0
—(F1G2 — F,Gy) — —(F3G — F1G3)
ay 9z

oF aG aF G oF
=G+ F—2 — 26, - h— - Z2¢,
by ay d ay az
3G, 8F 3Gs
R G+ 28
a9z Taz 0T

The first components of the four terms on the right side of identity (e) are

G G 0G
(Ve G)F); = F— + F|—= + e

dox ay 0z
d F; oF d F;
(GeVF) = — G+ LG+ -G,
ax dy 9z
oF o F dF:
—((VeF)G), = —— G, — —2G, — =26,
ax ay az
oG G oG
—(FeWVG) = —F— - —1 — ;=1

ax ay ez




(g) This is a straightforward calculation involving the equality of mixed partial
derivatives:

I N LR LA (8F1 aF3)
CVXBI =53 \%y "z ) Tay \ar ax

N 3 (8F 8F1)
gz \ ox dy
9k 9*F, 9°F  ’F; 'R, 3R

- oxdy " axdz + dyoz - dydx  3zox B azdy
=0.

Remark Two triple product identities for vectors were previously presented in
Exercises 18 and 23 of Section 10.3:

ae(bxc)=be(cxa)=-ce(axh),
axX(bxc) =(aec)b— (aeb)c.

While these are useful identities, they cannot be used to give simpler proofs of the
identities in Theorem 3 by replacing one or other of the vectors with V. (Why?)

Scalar and Vector Potentials

Two special terms are used to describe vector fields for which either the divergence
or the curl is identically zero.

Solenoidal and irrotational vector fields

A vector field F is called solenoidal in a domain D if divF = 0 in D.
A vector field F is called irrotational in a domain D if curl F = 0 in D.

Part (h) of Theorem 3 says that F = grad ¢ = curlF = 0. Thus,
Every conservative vector field is irrotational.
Part (g) of Theorem 3 says that F = curl G =— divF = 0. Thus,

The curl of any vector field is solenoidal.

The converses of these assertions hold if the domain of F satisfies certain conditions.

If F is a smooth, irrotational vector field on a simply connected domain D, then
F = V¢ for some scalar potential function defined on D, so F is conservative.

If F is a smooth, solenoidal vector field on a domain D with the property that every
closed surface in D bounds a domain contained in D, then F = curl G for some
vector field G defined on D. Such a vector field G is called a vector potential of
the vector field F.




Figure 16.4 The line segment from
Py to any point in D lies in D
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We cannot prove these results in their full generality at this point. However, both
theorems have simple proofs in the special case where the domain D is star-like. A
star-like domain is one for which there exists a point Py such that the line segment
from Py to any point P in D lies wholly in D. (See Figure 16.4.) Both proofs are
constructive in that they tell you how to find a potential.

Proof of Theorem 4 for star-like domains. Without loss of generality, we can
assume that P, is the origin. If P = (x, y, z) is any point in D, then the straight
line segment

r(t) = txi+tyj + tzKk, O=<t=<l,
from Py to P lies in D. Define the function ¢ on D by

! dr
P(x,y,2) =/ F(r(t)) . d—dt
0 t
1
= [ (RGO + yREn 0 +2FrE ) di
0
where &€ = tx, n = ty, and { = tz. We calculate d¢/dx, making use of the

fact that curlF = 0 to replace (3/3&)F,(&,n,¢) with (3/an)F1(&,n,¢) and
(8/08)F3(&, n, ¢) with (3/88) F1(§, 1, §):

¢ _ 1 doF 0F oF;
= (Fl(g 7 {)+tx—?+ty——g— tz—g) :
! 9F, aF oF,
/0 (Fl(‘g” n, §)+tx¥+ty—+t y)dt

=f01%(tFl(s,n, 6))di

1
=(tF1(tx,ty,tZ)) =F1(X,)’az)-

0

Similarly, 3¢ /dy = F, and 8¢/dz = F3. Thus V¢ = F.

The details of the proof of Theorem 5 for star-like domains are similar to those of
Theorem 4, and we relegate the proof to Exercise 18 below.

Note that vector potentials, when they exist, are very nonunique. Since
curl grad ¢ is identically zero (Theorem 3(h)), an arbitrary conservative field can
be added to G without changing the value of curl G. The following example illus-
trates just how much freedom you have in making simplifying assumptions when
trying to find a vector potential.
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Show that the vector field F = (x2+ yz)i—2y(x +2)j+ (xy +zH)k
is solenoidal in R* and find a vector potential for it.
Solution Since divF = 2x — 2(x + z) + 2z = 0in R, F is solenoidal. A vector
potential G for F must satisfy curl G = F, that is,

Gz 0G»

2

D + vz,

ay az TR

G, 9Gs3

— — —— = —2xy—2yz,
9z I Xy yz
3G, 039Gy )

ax dy =xyE

The three components of G have nine independent first partial derivatives, so there
are nine “degrees of freedom” involved in their determination. The three equations
above use up three of these nine degrees of freedom. That leaves six. Let us
try to find a solution G with G, = 0 identically. This means that all three first
partials of G, are zero, so we have used up three degrees of freedom in making this
assumption. We have three left. The first equation now implies that

1
Gs = /(x2+yz)dy =x%y + Eyzz+M(x,z)-

(Since we were integrating with respect to y, the constant of integration can still
depend on x and z.) We make a second simplifying assumption, that M(x, z) = 0.
This uses up two more degrees of freedom, leaving one. From the second equation

we have
oG aG
2B 2xy —2yz = 2xy — 2xy — 2yz = —2yz,
az dx

S0
G =-2 / yzdz = —yz% + N(x, y).

We cannot assume that N(x, y) = 0 identically because that would require two
degrees of freedom and we have only one. However, the third equation implies

0G, , ON
+7P=—— =72 .
xy+z 3y Z By
Thus, (3/3y)N(x,y) = —xy; observe that the terms involving z have cancelled

out. This happened because divF = 0. Had F not been solenoidal, we could not
have determined N as a function of x and y only from the above equation. As it is,
however, we have

1
N(x,y) = —/ xydy = —Exyz-i— P(x).

We can use our last degree of freedom to choose P(x) to be identically zero and
hence obtain

G= —(yz2 + x—;—z)n + (xzy + y—;f)k

as the required vector potential for F. You can check that curl G = F. Of course,
other choices of simplifying assumptions would have led to very different functions
G, which would have been equally correct.

_u
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Maple Calculations

The Maple linalg package defines routines grad, laplacian, diverge, and curl that
calculate the gradient and laplacian of scalar expressions and the divergence and
curl of vector expressions with respect to a given vector of variables.

> with(linalg): xvyz := [X,V.Z];
grad (exp(x) *sin(y)+3*z,xvyz) ;
xyz:=[x,y,z]
[e” sin(y), e* cos(y), 3]
> v 1= [x*y, y*z, z*x]; diverge(v,xyz);
v:i=[xy, yz, 2X]

y+z+x
> curlv := curl(v,xyz);
curlv :=[—y, —z, —x]
Because grad, diverge, and curl just convert expressions to expressions, it is awkward

to evaluate the output at a specific point. For instance, we can’t obtain the value of
curlv(l, 2, 3) by entering curlv(1l,2,3):

> curlv(l,2,3);

[_y(la 2’ 3)9 _Z(13 2’ 3)7 _x(l’ 27 3)]
Instead, we have to evaluate curlv as a vector with evalm and then use subs to
substitute the values for x, y, and z into the result.
> subs(x=1,y=2,z=3,evalm(curlv));
[-2,-3,-1]
In order to simplify the use of the vector differential operators, let us define new
routines, which we will call Grad, Div, and Curl, so that each is an operator con-
verting functions to functions, rather than expressions to expressions. In addition,
we will define vector and scalar versions of the Laplace operator, Lapl, and Lapl,
an operator &dotDel for calculating (F ¢ V)G, and a procedure MakeVecFcn to
facilitate the definition of vector-valued functions. These definitions are collected
in the file vecdiff.def, which we list here. It can be found on the author’s website
(www.pearsoned.ca/text/adams_calc).

MakeVecFcn := proc{u,v,w)
[unapply(u,x,y,z),unapply(v,x,v, z) ,unapply (w,x,y, z) ]
end;

Grad := F -> [D{1]1(F),D[2]1(F),DI[3]1(F)]1;

Div := F -> D[1]1(F[1])+D[2](F[2])+DI[3]1(FI[31);

Curl := F -> [D[2](F[3])-D[31(F[2]),
D[3](F[L1])-DI1](FI[3]),D[L]I(F[2])-DI2]1(F[1])];

lapl := F -> D[1,1](F)+D[2,2](F)+DI[3,3] (F);

Lapl := F -> [lapl(F[1]),lapl(F[(2]),lapl(F[31)];

'&dotDel’ := proc(U,V)
optiong operator, arrow; local 1, J;
[seq(sum(U[i]1*D[i]1(V[j]),1i=1..3),3=1..3)]

end;




960

CHAPTER 16 Vector Calculus

These definitions can be read in to a Maple session with the command
> read "vecdiff.def";

In addition, we will want to read in the definitions in the file vecops.def discussed
in Section 10.7. (This file in turn loads the linalg package.)

> read "vecops.def";

Now let us illustrate the usage of the procedures defined in vecdiff.def. It
should be noted that all vectors used with these procedures must be 3-vectors, and
functions should depend on (at most) three variables. Grad takes a scalar function
to a vector function. In Maple, an undefined name can represent an (arbitrary)
scalar function:

> Grad(g):

[Di(g). D2(g), D3(g)]
A vector-valued general function must, however, be declared to be a vector:
> U := vector(3); Curl(U);

U :=array(1.3,1])

[D2(U3) — D3(Ua), D3(Uy) — D1(U3), D((Uz) — D2(Uy)]

Explicitly defined scalar-valued functions can be defined using the usual “->
notation:

29

> f 1= (X,y,2) > X"2%y + yv"2%z273;
fi=(,y,2) = xy +y?2?
> Grad(f); Grad(f)(1,2,3);
[(x,y,2) = 2xy, (x, y,2) = x* + 2y, (x, y,2) > 3y%2%]
[4, 109, 108]

However, we cannot use this technique to define a vector-valued function. If we try
to use, say,

> F := (X,y,2) -> [x 2%y, y"3%z, z74*x];
we will get a function whose values are the desired vectors, but Maple will not regard
the function F itself as being a vector with componentscalar functions ¥ [1],F[2],

and F [3]. To get such a “vector function” we can feed the desired components to
the procedure MakeVecFcn defined in vecdiff.def.

> F := MakeVecFcn (x"2*y,y"3*z,z274*x);

Fi=[(x,y,2) > x%y, (x,y,2) = ¥z, (x, y,2) = z%x]
NOTE: MakeVecFcn only defines three-dimensional vector functions, and the
three component expressions u, v, and w will be considered to be expressions in the

variables x, y, and z. These variables must not have been assigned any values or the
procedure won’t work.

> Div(F)(3,-2,1); Curl(F) (a,b,c);
12
[—B3, —c*, —a?]
> Div(Curl(F))(1,2,3); Curl(Grad(f)) (a,b,c);
0
[0,0,0]
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Of course, Div (Curl (U) ) should be O for any three-dimensional field U, and
Curl (Grad(g) should be [0, 0, 0] for any scalar field g. We can verify these for
our general (unspecified) fields U and g just as easily.

> Div(Curl(U)); Curl(Grad(g)):;
0

[0,0,0]
Here are some calculations involving the scalar and vector Laplacian operators:
> lapl(f)(a,b,c); Lapl(F) (a,b,c); lapl(g) (a,b,c);

2b 4 2¢3 + 6b%c
(2B, 6bc, 12¢%a)

Dy1(g)a, b, c) + D22(g)(a, b, c) + D33(g)a, b, c)
We can verify the identity curl curl U = grad div U — Laplacian(U) by subtracting
the right side from the left:

> Curl(Curl(U))-Grad(Div(U))+Lapl (U);
[0,0,0]

Other identities can be verified similarly. Sometimes some simplification of the
result is necessary. You canuse simplify (%) to simplify an immediately previ-
ous scalar result, or evl (%) (defined in vecops.def) to simplify the immediately
previous vector result.

As a final example let us verify the identity
VUe V) =UxX(VXV)+VXx(VXxU)+ (Ue V)V 4+ (Ve VU.

> V := vector(3);
Grad(U &. V) - U &x Curl(V) - V &x Curl({(U)
- U &dotDhel V - V &dotDel U;

This input produces several lines of output: an unsimplified vector involving various
combinations of the components of U and V and their first partial derivatives. To
simplify it, we use the ev1 routine from vecops . def.

> evl(%);
[0,0,0]

which confirms the identity.

[ S

~N S U A

. Prove part (a) of Theorem 3.
. Prove part (b) of Theorem 3.
. Prove part (d) of Theorem 3.

div F? about corl F?

8. Letr = xi + yj + zKk and let ¢ be a constant vector. Show
that Ve (exr) =0, VX(eXr) = 2¢,and V(cer) = c.

9. Letr = xi + yj+ zk and let r = |r|. If f is a differentiable
function of one variable, show that

. Prove part (f) of Theorem 3.

. Prove part (h) of Theorem 3. Ve (f(rm) =rf'(r) +3f).

. Prove part (1) of Theorem 3. Find f(r) if f(r)r is solenoidal for r # 0.

. Given that the field lines of the vector field F(x, y, z) are 10. If the smooth vector field F is both irrotational and
parallel straight lines, can you conclude anything about solenoidal on R?, show that the three components of F and

the scalar potential for F are all harmonic functions in R3.
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11. If r = xi + yj + zk and F is smooth, show that 15. If the vector fields F and G are smooth and conservative,
show that F x G is solenoidal. Find a vector potential for
VX (Fxr)=F — (VeF)r + V(Fer) —rx(VxF). FxG.

16. Find a vector potential for F = —yi + xj.

In particular, if Ve F = 0 and VXF = 0, then 17. Show that F = xeXi + yej — ¢k is a solenoidal vector

Vx(Fxr) = F + V(F o). field, and find a vector potential for it.

* 18. Suppose divF = 0in a domain D any point P of which can
by joined to the origin by a straight line segment in D. Let
r =txi+tyj+tzk, (0 <t < 1), be a parametrization of the

12. If ¢ and v are harmonic functions, show that ¢ Vi — ¢ Vg line segment from the origin to (x, v, z) in D. If

is solenoidal.

13. If ¢ and ¢ are smooth scalar fields, show that

1
dr

VX (V) = —Vx () V) = VX VY. Gty = /0 RO g

14. Verity the identity show that curl G = F throughout D. Hint: it is enough to
check the first components of curl G and F. Proceed in a
Ve ( f(Vgx Vh)) = V/f ¢ (VgxVh) manner similar to the proof of Theorem 4.
B 19. Use Maple and the definitions in the files vecops.def and
for smooth scalar fields f, g, and A. vecdiff.def to verify the identities (a)—(e) of Theorem 3.

The Fundamental Theorem of Calculus,

b q
/ L fedx = f®) - f@.
. dx

expresses the integral, taken over the interval [a, b], of the derivative of a single-
variable function, f, as a sum of values of that function at the oriented boundary
of the interval [a, b], that is, at the two endpoints a and b, the former providing a
negative contribution and the latter a positive one. The line integral of a conservative
vector field over a curve C from A to B,

/CV¢ e dr = ¢(B) — ¢(A),

has a similar interpretation; Ve is a derivative, and the curve C, although lying in a
two- or three-dimensional space, is intrinsically a one-dimensional object, and the
points A and B constitute its boundary.

Green’s Theorem is a two-dimensional version of the Fundamental Theorem
of Calculus that expresses the double integral of a certain kind of derivative of a
two-dimensional vector field F(x, ¥), namely the k-component of curlF, over a
region R in the x y-plane as a line integral (i.e., a “sum”) of the tangential component
of F around the curve C which is the oriented boundary of R:

/f curlFodez‘(fFodr,
R C

or, more explicitly,




Figure 16.5 A plane domain with
positively oriented boundary
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// (@ - 9&) dxdy = f Fi(x,y)dx + F(x, y)dy.
c

For this formula to hold, C must be the oriented boundary of R considered as a
surface with orientation provided by N = k. Thus, C is oriented with R on the left
as we move around C in the direction of its orientation. We will call such a curve
positively oriented with respect to R. In particular, if C is a simple closed curve
bounding R, then C is oriented counterclockwise. Of course, R may have holes,
and the boundaries of the holes will be oriented clockwise. In any case, the unit
tangent T and unit exterior (pointing out of R) normal NonC satisfy N = Txk.
See Figure 16.5.

Green’s Theorem

Let R be a regular, closed region in the x y-plane whose boundary, C, consists of one
or more piecewise smooth, non-self-intersecting, closed curves that are positively
oriented with respectto R. If F = Fj(x, y)i+ F,(x, y)j is a smooth vector field on
R, then

%Fl(x M dx+ Folx, y)dy = /f (%—%ﬁ) da.

PROOF Recall that aregular region can be divided into nonoverlapping subregions
that are both x-simple and y-simple. (See Section 14.2.) When two such regions
share a common boundary curve, they induce opposite orientations on that curve,
so the sum of the line integrals over the boundaries of the subregions is just the
line integral over the boundary of the whole region. (See Figure 16.6.) The double
integrals over the subregions also add to give the double integral over the whole
region. It therefore suffices to show that the formula holds for a region R that is
both x-simple and y-simple.

Since R is y-simple, it is specified by inequalities of the forma < x < b,
fx) <y < g(x), with the bottom boundary y = f(x) oriented left to right and
the upper boundary y = g(x) oriented right to left. (See Figure 16.7.) Thus,

(x)
//dedy-— /dx /f(g) 8F1
= [ (~F(x.5@) + Al ,f(x)))dx

On the other hand, since dx = 0 on the vertical sides of R, and the top boundary is
traversed from b to a, we have

ygﬂ(x,y)dx=/( L(x, £(0) — Fi(x, g(x)) dx—/f ——d dy.

I . . . oF,
Similarly, since R is x-simple, fﬁ Fdy= / 8—2 dxdy,so
c R OX

%Fl(x y)ydx + F(x, y)dy—// (@—a—a{}) dA.
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(Area bounded by a simple closed curve) For any of the three
vector fields

1
F=xj, F=-yi and F=_(~yitx).

we have (8 F»/0x) — (3 F/dy) = 1. If C is a positively oriented, piecewise smooth,
simple closed curve bounding a region R in the plane, then, by Green’s Theorem,

%Xdym *—f ydle %ﬁiydya;—ydx =f/ 1dA = areaof R.
MR R 3

Evaluate / = i)l (x—y} dx+(y*+x>) dy, where Cis the positively
c
oriented boundary of the quarter-disk Q: 0 < x?> +y? <a®,x >0,y > 0.

Solution We use Green’s Theorem to calculate I:

1—/]( o’ +x3>——(x—y))
=3ff(x2+y2)dA=3/ def Pdr = Smat,
0 0 0 8

IEEEEN Lt C be a positively oriented, simple closed curve in the xy-plane,
bounding a region R and not passing through the origin. Show that

—ydx+xdy |0 if the origin is outside R
e xX4y? 2m  if the origin is inside R.

Solution First, if (x, y) # (0, 0), then, by direct calculation,

a x a -y
—_— —_— -_— —_—— = 0_
dx \x2+y? dy \x2 4 y?2

If the origin is not in R, then Green’s Theorem implies that

ydx+xdy R] —y
—— | 5= ]|dxdy=0.
e x2+4y2 ax \xZ+y?2 y \x2+ y2

Now suppose the origin is in R. Since it is assumed that the origin is not on C, it
must be an interior point of R. The interior of R is open, so there exists € > 0
such that the circle C. of radius ¢ centred at the origin is in the interior of R. Let
C. be oriented negatively (clockwise). By direct calculation (see Exercise 22(a) of
Section 15.4) it is easily shown that

% —ydx +xdy
Ce

= —2m.
x2+ y?




Figure 16.8
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Together C and C, form the positively oriented boundary of aregion R, thatexcludes
the origin. (See Figure 16.8.) So, by Green’s Theorem,

%‘—ydx—{-xdy % —ydx +xdy
—— T} _ =
c  x*+y? c. xX*+y?

The desired result now follows:

%‘—ydx—f—xdy_ f —ydx +xdy
c c.

x2+y2 x2+y2 ( )

The Two-Dimensional Divergence Theorem

The following theorem is an alternative formulation of the two-dimensional Funda-
mental Theorem of Calculus. In this case we express the double integral of divF
(a derivative of F) over R as a single integral of the outward normal component of
F on the boundary C of R.

The Divergence Theorem in the Plane

Let R be a regular, closed region in the xy-plane whose boundary, C, consists of one
or more piecewise smooth, non-self-intersecting, closed curves. Let N denote the
unit outward (from R) normal field on C. If F = Fj(x, y)i + F>(x, y)j is a smooth
vector field on R, then

: / f dideAv&% FeNds.
R : : C: o N

PROOF As observed in the second paragraph of this section, N = Txk, where
'i‘ is the unit tangent field in the positive direction on C. If T="Ti+ T>j, then
N = Thi — Tij. (See Figure 16.9.) Now let G be the vector field with components
Gi=—F,and G, = F,. Then G o T=FeN and, by Green’s Theorem,

//dldeA f/(aFl an)dA
/AC L
:}éc.dr:?gc.fds:fémﬁds.

1. Evaluate ‘(f (sinx + 3y2) dx + (2x — e_yz)dy, where C is 2. Evaluate f(xz —xy)dx + (xy — y2) dy clockwise around
C

. ¢ . .
the boundary of the half-disk x2 +y2 < d?, y > 0, oriented the triangle with vertices (0, 0), (1, 1), and (2, 0).

counterclockwise.
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3. Evaluate f (x sin(y?) — y2) dx + (xzy cos(yz) + 3x) dy, Evaluate .(ﬁ Fedr, where F = ye"zi + x3e%j.
¢

where ¢ i.s the counterclockwise boundary of the trapezoid 8. If C is the positively oriented boundary of a plane region R

with vertices (0, —2), (1, —1), (1, 1), and (0, 2). having area A and centroid (X, ¥), interpret geometrically
4. Evaluate % x2 ydx — xy2 dy, where C is the clockwise the line integral ¢ F e dr, where

C C

boundary of the region 0 < y < /9 — x2. @F=x2j, MF=uxyi, and (¢)F =%+ 3xyj.
5. Use a line integral to find the plane area enclosed by the * 9. (Average values of harmonic functions) If u(x, y) is

curver =acos’ ti+hsin®£j,0 <t <2m. harmonic in a domain containing a disk of radius » with

boundary C,, then the average value of u around the circle is
the value of u at the centre. Prove this by showing that the
derivative of the average value with respect to r is zero (use
divergence theorem and harmonicity of «) and the fact that

the limit of the average value as r — 0 is the value of u at
7. Sketch the plane curve C: r = sinti+sin2zj, (0 <t < 2m). the centre.

6. We deduced the two-dimensional Divergence Theorem from
Green’s Theorem. Reverse the argument and use the
two-dimensional Divergence Theorem to prove Green’s
Theorem.

The Divergence Theorem (also called Gauss’s Theorem) is one of two important
versions of the Fundamental Theorem of Calculus in R, (The other is Stokes’s
Theorem, presented in the next section.)

In the Divergence Theorem, the integral of the derivative divF = Ve F over
a domain in 3-space is expressed as the flux of F out of the surface of that domain.
It therefore closely resembles the two-dimensional version Theorem 7 given in the
previous section. The theorem holds for a general class of domains in R® that
are bounded by piecewise smooth closed surfaces. However, we will restrict our
statement and proof of the theorem to domains of a special type. Extending the
concept of an x-simple plane domain defined in Section 14.2, we say the three-
dimensional domain D is x-simple if it is bounded by a piecewise smooth surface
S and if every straight line parallel to the x-axis and passing through an interior
point of D meets S at exactly two points. Similar definitions hold for y-simple
and z-simple, and we call the domain D regular if it is a union of finitely many,
nonoverlapping subdomains, each of which is x-simple, y-simple, and z-simple.

The Divergence Theorem (Gauss’s Theorem)

Let D be aregular, 3—dimensionAa1 domain whose boundary S is an oriented, closed
surface with unit normal field N pointing out of D. If F is a smooth vector field
defined on D, then

| ff dwwv:#mﬂd&



SECTION 16.4: The Divergence Theorem in 3-Space 967

W K
N
z=g(x,y)
Sl SZ
NZ Nl
Dy S* D,
Figure 16.10 A union of abutting domains Figure 16.11 A z-simple domain

PROOF Since the domain D is a union of finitely many nonoverlapping domains
that are x-simple, y-simple, and z-simple, it is sufficient to prove the theorem for a
subdomain of D with this property. To see this, suppose, for instance, that D and S
are each divided into two parts, D; and D,, and §) and S, by a surface S* slicing
through D. (See Figure 16.10.) S* is part of the boundary of both D; and D>, but
the exterior normals, 1(11 and Nz, of the two subdomains point in opposite directions
on either side of §*. If the formula in the theorem holds for both subdomains,

fff dideV:# FeN,dS

D, SUS*

/// dideV:# FeN,ds,
Dy SUS*

then, adding these equations, we get

/// dideV:# FoNdS:# FeNds:
D S1US, S

the contributions from S* cancel out because on that surface Nz = —Nl.

For the rest of this proof we assume, therefore, that D is x-, y-, and z-simple.
Since D is z-simple, it lies between the graphs of two functions defined on a region
Rinthe xy-plane; if (x, y, z) isin D, then (x, y)isin Rand f(x,y) < z < g(x, y).
(See Figure 16.11.) We have

(x,y)
///%dV:/f dxdyfg ’ %d
p 32 R feey) 02
://R(Fa(x,y,g(x,y))—Fa(x,y, f(x,y))) dxdy.

Now

ﬁFoNdS:ﬂ<F1i0N+F2joN+F3koN)dS.
S S
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Only the last term involves F3, and it can be split into three integrals, over the top
surface z = g(x, y), the bottom surface z = f(x, y), and vertical side wall lying
above the boundary of R:

ﬁ&(x,y,z)koﬁds:(// [+ )B(x,y,z)koNdS.
S top bottom side

On the side wall, ke N = 0, so that integral is zero. On the top surface, z = g(x, y),
and the vector area element is

Accordingly,

// F3(x,y,z)koNdS=//R Fg(x,y,g(x,y))dxdy.
top

Similarly, we have

// F3(x,y,z)koNdS=—//R F(x,y, f(x,y))dxdy;
bottom

the negative sign occurs because N points down rather than up on the bottom. Thus
we have shown that

F .
/// 0 4y = #ngoNdS.
S

Similarly, because D is also x-simple and y-simple,

aF LR
/ff gy = ﬁ{m.ws
S
IF .
///—%zv #szoNdS.
S

Adding these three results we get

f// divFdV = # FeNdS.
D S

The Divergence Theorem can be used in both directions to simplify explicit calcu-
lations of surface integrals or volumes. We give examples of each.

Let F = bxy%i + bx%yj + (x2 + y?)z%k, and let S be the closed
surface bounding the solid cylinder R defined by x?> + y> < g>and 0 < 7 < b.

Find # F e dS.
S

Solution By the Divergence Theorem,

#Fods //fleFdV // x* +yH (b +22)dV
S
27
/(b+22)dz/ d@/ r2rdr

= (b* + b*)27(a*/4) = wa’b>.
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IEZXY Evaluate # (x2+y%) dS, where S is the sphere x2 + y2 +z2 = a?.
S

Use the Divergence Theorem.
Solution On S we have

N i j+zk
N=£:xl+yj+z ‘
a a

We would like to choose F so that F e N = x2 + y2. Observe that F = a(xi + yj)
will do. If B is the ball bounded by S, then

#(xz-l—yz)dS:.#FoNdS://f divFdVv
S S B
4 3 8 4
= 2adV = Ra)-na’ = —na".
B 3 3

By using the Divergence Theorem with F = xi+ yj + zk, calculate
the volume of a cone having base area A and height /2. The base can be any smoothly

bounded plane region.

Solution Letthe vertex of the cone be at the origin and the base in the planez = &
as shown in Figure 16.12. The solid cone C has surface consisting of two parts:
the conical wall S and the base region D that has area A. Since F(x, y, z) points
directly away from the origin at any point (x, y, z) # (0,0, 0), we have F o N=0
onS. On D, wehave N=k and 7 = h, so F e N = 7z = / on the base of the cone.
Since divF(x, y,z) =1+ 1 + 1 = 3, we have, by the Divergence Theorem,

3V=ff/dideV=//FoNdS+//FoNdS
C S D
=0+hf/ ds = Ah.
D

Thus V = %Ah, the well-known formula for the volume of a cone.

Figure 16.12 A cone with an arbitrarily shaped base Figure 16.13 A solid domain with a spherical cavity
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Figure 16.14 The boundary of
domain D has five faces, one curved
and four planar

1S ETNTILE N [et S be the surface of an arbitrary regular domain D in 3-space
that contains the origin in its interior. Find

# FeNds,
S

where F(r) = mr/|r|? and N is the unit outward normal on S.

Solution Since F and, therefore, div F are undefined at the origin, we cannot
apply the Divergence Theorem directly. To overcome this problem we use a little
trick. Let S* be a small sphere centred at the origin bounding a ball contained
wholly in D. (See Figure 16.13.) Let N* be the unit normal on S* pointing into the
sphere, and let D* be that part of D that lies outside S*. As shown in Example 3 of
Section 16.1, divF = 0 on D*. Also,

# FeN*dS = —4mm,

is the flux of F inward through the sphere S*. (See Example 1 of Section 15.6.)
Therefore,

o=/// dideV:#FoNdS+# FeN*dS
£ S *

:#F.Nds—mm,
S

so# FeNdS = 4nm.
S

Find the flux of F = xi + y2j + zk upward through the first-octant
part S of the cylindrical surface x> + z2 = a%,0 <y < b.

Solution S is one of five surfaces that form the boundary of the solid region D
shown in Figure 16.14. The other four surfaces are planar: S; lies in the plane
7 = 0, S, lies in the plane x = 0, S; lies in the plane y = 0, and S, lies in the plane
y = b. Orient all these surfaces with normal N pointing out of D. On &; we have
N=-k soFeN=—-z=00n3. Similarly, F e N=0o0nS,and S3. On Sy,
y=band N =j,soF e N =y = b2 there. If S, denotes the whole boundary of
D, then

# FoNdS://FoNdS+O+O+O+// FeNdsS
Stot S Sa
212
:f/F.NdS+”“b .
s 4

On the other hand, by the Divergence Theorem,

ﬁ FoNdS:/// dideV:/f 2 +2y)dV =2V +2Vy,
Stot D D

where V = ma”b/4 is the volume of D, and y = b/2 is the y-coordinate of the
centroid of D. Combining these results, the flux of F upward through S is
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. 2wa’b b ra*b*  ma*b
FeNdS = 1+=-)— = .
‘ i[]i ‘ z <+2> i T2

Among the examples above, Example 4 is the most significant and the one that
best represents the way that the Divergence Theorem is used in practice. It is
predominantly a theoretical tool, rather than a tool for calculation. We will look at
some applications in Section 16.6.

Variants of the Divergence Theorem

Other versions of the Fundamental Theorem of Calculus can be derived from the
Divergence Theorem. Two are given in the following theorem:

If D satisfies the conditions of the Divergence Theorem and has surface S, and if F
is a smooth vector field and ¢ is a smooth scalar field, then

@ fff curlev?.:~#'Fxﬁds,
) ff gradgdV = # oNdS.

PROOF Observe that both of these formulas are equations of vectors. They are
derived by applying the Divergence Theorem to F X ¢ and ¢¢, respectively, where ¢
is an arbitrary constant vector. We give the details for formula (a) and leave (b) as
an exercise.

Using Theorem 3(d), we calculate
Ve (Fxc)=(VXF)ec—Fe(Vxc)=(VXF)ec.

Also, by the scalar triple product identity (see Exercise 18 of Section 10.3),
(Fxc)eN=(NxF)ec=—(FxN)ec.

Therefore,

(/// curleV+# FXNdS) oC
D S
:ff (VxF)-ch—ﬂ(FXc)oNdS
D S
=/// div(Fxc)dV—ﬁ(Fxc)oNdS:O.
D )

Since c¢ is arbitrary, the vector in the large parentheses must be the zero vector. (If
¢ e a = 0 for every vector ¢, then a = 0.) This establishes formula (a).

| Exercises 16.4

In Exercises 1-4, use the Divergence Theorem to calculate the 1. F=uxi—2yj+4zk 2. F = yefi+ x%e% + xyk
flux of the given vector field out of the sphere S with equation 3.F=(x2+ yz)i + (yz —D)j+zk

2 2 2 2
X+ y°+z°=a°,wherea > 0. . .
4. F=x%+ 3yz2J + (3y2z + x2)k
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In Exercises 5-8, evaluate the flux of F = x2i + y%j + 2%k
outward across the boundary of the given solid region.

5. Theball (x —2)* + y> + (z = 3)? <9

6. The solid ellipsoid x2 4+ y2 +4(z — 1)? < 4

7. The tetrahedron x +y 4z <3,x >0,y >0,z >0

8. The cylinder x? + vi<2y,0<z<4

9. Let A be the area of a region D forming part of the surface

of a sphere of radius R centred at the origin, and let V be the

volume of the solid cone C consisting of all points on line
segments joining the centre of the sphere to points in D.

Show that
1

V = —-AR
3

by applying the Divergence Theorem to F = xi + yj + zk.

10. Let ¢(x, y,z) = xy + z2. Find the flux of Ve upward
through the triangular planar surface S with vertices at
(a,0.0), (0, b,0), and (0,0, c).

11. A conical domain with vertex (0, 0, b) and axis along the
z-axis has as base a disk of radius g in the xy-plane. Find
the flux of

F=(x+y)i+06x%y+y° —xd)j+ + Dk

upward through the conical part of the surface of the
domain.

12. Find the flux of F = (y + x2)i+ (v + y2)j — 2x + z22)k
upward through the first octant part of the sphere
2242 =l

13. Let D be the region x2 + y? 4 72 < 442, x2 4+ y2 > 42. The
surface § of D consists of a cylindrical part, S, and a
spherical part, S». Evaluate the flux of

F=x+y)i+ (y—x2)j+ (z—e'siny)k

out of D through (a) the whole surface S, (b) the surface S,
and (¢) the surface S3.

14. Evaluate f/ (3xz%i — xj — yk) ® NdsS, where S is that part
S

of the cylinder y? + z2 = 1 which lies in the first octant and
between the planes x = Oand x = 1.

15. A solid region R has volume V and centroid at the point
(¥, ¥.z). Find the flux of

F=@u?—x —2y)i+(2y2+3y—z)j—(22—4z +xy)k

out of R through its surface.

16. The plane x + y + z = 0 divides the cube —1 < x < 1,
—1 <y <1,—1 <z < linto two parts. Let the lower part
(with one vertex at (—1, —1, —1)) be D. Sketch D. Note
that it has seven faces, one of which is hexagonal. Find the
flux of F = xi+ yj+ zk out of D through each of its faces.

17. LetF = (32 + y + 2 + 22)i + (¢ + y)j + 3 + x)k. Let
a > 0, and let S be the part of the spherical surface
x% + y? + 22 = 2az + 3a? that is above the xy-plane. Find
the flux of F outward across S.

18. A pile of wet sand having total volume 57 covers the disk
x? +y2 <1,z = 0. The momentum of water vapour is
given by F = grad ¢ + peurl G, where ¢ = x2 — y2 + 22 is
the water concentration, G = %(— y3i+x3j + 2°k), and u
is a constant. Find the flux of F upward through the top
surtace of the sand pile.

In Exercises 19-29, D is a three-dimensional domain satistying
the conditions of the Divergence Theorem, and S is its surface.
N is the unit outward (from D) normal field on S. The functions
¢ and ¥ are smooth scalar fields on D. Also, d¢/dn denotes the
first directional derivative of ¢ in the direction of N at any point
onS:

] N
—¢=V¢0N.
on

19. Show that curl F ¢ NdS = 0, where F is an arbitrary

S
smooth vector field.
20. Show that the volume V of D is given by

1 N
V:—ﬂ(xi-f—yj-f—zk)oNdS.
3 S

21. If D has volume V, show that

is the position vector of the centre of gravity of D.
22. Show that ﬂ Vo xNdS = 0.
S

23. If F is a smooth vector field on D, show that

/f ¢dideV+// quoFdV:ﬂ:pFoNdS.
D D S

Hint: use Theorem 3(b) from Section 16.2.
Properties of the Laplacian operator

24. If V?¢ = 0in D and ¢(x, y, z) = 0 on S, show that
¢(x,y,2) =0in D. Hint: let F = V¢ in Exercise 23.

25. (Uniqueness for the Dirichlet problem) The Dirichlet
problem for the Laplacian operator is the boundary-value
problem

{ Viu(x,y,z) = f(x,y.z) onD
u(x,y,z) =g(x,y,z) ons,
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where f and g are given functions defined on D and S, 29. By applying the Divergence Theorem to F = ¢c¢, where ¢ is
respectively. Show that this problem can have at most one an arbitrary constant vector, show that
solution u(x, y, z). Hint: suppose there are two solutions, u
and v, and apply Exercise 24 to their difference ¢ = u — v. / f Vodv = ﬂ sNds.
26. (The Neumann problem) If V2¢ = 0in D and 3¢ /3n = 0 D S

on S, show that Vi (x, y, z) = 0 on D. The Neumann
problem for the Laplacian operator is the boundary-value

problem *30. Let P be a fixed point, and for each € > 0 let D, be a

5 domain with boundary S satisfying the conditions of the
Voulx,y.2) = f(x,y,2) onD Divergence Theorem. Suppose that the maximum distance

] . from Py to points P in D, approaches zero as € — 0t If
%u(x’ y.2) =g, y,2) on, D¢ has volume vol(D¢), show that

where f and g are given functions defined on D and S,

respectively. Show that, if D is connected, then any two lim 1 FoNdS = divF(Py)
solutions of the Neumann problem must differ by a constant e—>0t vol(D¢) Jf s, o’
on D.
3 . . .
27. Verify that / f V2 dv = ﬂ ?32 ds. This generalizes Theorem 1 of Section 16.1.
D s 9n

28. Verify that

f/f (¢V2¢f—wV2¢)dV

D
_ dy 9
)

If we regard a region R in the xy-plane as a surface in 3-space with normal field
N =k, the Green’s Theorem formula can be written in the form

fF.dr:f/ curlF e Nd5S.
C R

Stokes’s Theorem given below generalizes this to nonplanar surfaces.

Stokes’s Theorem

Let S be a piecewise smooth, oriented surface in 3-space, having unit normal field
N and boundary C consisting of one or more piecewise smooth, closed curves with
orientation inherited from S. If F is a smooth vector field defined on an open set
containing S, then

curlF e Nds.

fFodl'mf
e

PROOF An argument similar to those given in the proofs of Green’s Theorem
and the Divergence Theorem shows that if S is decomposed into finitely many
nonoverlapping subsurfaces, then it is sufficient to prove that the formula above
holds for each of them. (If subsurfaces §; and &; meet along the curve C*, then
C* inherits opposite orientations as part of the boundaries of &; and &3, so the
line integrals along C* cancel out. See Figure 16.15(a).) We can subdivide S into
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Figure 16.15
(a) Stokes’s Theorem holds for a

composite surface comprised of
non-overlapping subsurfaces for

which it is true
(b) A surface with a one-to-one
projection on the xy-plane

W

enough smooth subsurfaces that each one has a one-to-one normal projection onto
a coordinate plane. We will establish the formula for one such subsurface, which
we will now call S.

(a) (b)

Without loss of generality, assume that S has a one-to-one normal projection onto
the xy-plane and that its normal field N points upward. Therefore, on S, z is a
smooth function of x and y, say z = g(x, y), defined for (x, y) in a region R of the
xy-plane. The boundaries C of Sand C* of R are both oriented counterclockwise as
seen from a point high on the z-axis. (See Figure 16.15(b).) The normal field on S

() ()

and the surface area element on S is expressed in terms of the area element
dA = dx dy in the xy-plane as

ag\>  [dg\’
ds = 1+(-g> +(2) aa.
ax ay
Therefore,
~ F:
// curl F e Nd§ :/f [(b _ %) (_a_g) + (@ _ %) (_%')
s rL\ dy 0z dx dz  ox ay
aF
w (22 3Ny
ax ay

0 d
Since z = g(x, y) on C, we have dz = B_g dx + a—g dy. Thus,
X y

fF.dr:‘f [Fl(x7yyz)dx+F2(x’y1Z)dy
c *

a d
+ F3(x, y,2) (—g dx + =5 dy
dax ay

a
Zf ([Fl(x7 )’,Z)+F3(X»Y»Z)5§j| dx

d
+ [Fz(x, y,2) + F3(x, y,z)gil dy).




Figure 16.16

g

X
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We now apply Green’s Theorem in the xy-plane to obtain

0 ag
fF-dr: // (— [Fz(x,y,z)+F3(x,y,Z)—}
c r\0x dy

2 b}
- — Fl(x,y,z)+F3(x,y,z)—g )dA
dy ax

oF, 3F 9 9F; 9 0F; dg d 82
=// 3 9k dg  IF0g  BFdsd¢ | L 0%
R\ 0x 0z o0x ax dy dz ox dy axdy
F;9 2
0F, 0F dg 0F:0g 0F;0gdg F 9%g )dA.

dy dz Jy dy ox dz 3y ox 38y8x

Observe that four terms in the final integrand cancel out, and the remaining terms
are equal to the terms in the expression for [, geurlF e NdS calculated above.
Therefore the proof is complete.

»

Remark If curlF = 0 on a domain D with the property that every piecewise
smooth, non-self-intersecting, closed curve in D is the boundary of a piecewise
smooth surface in D, then Stokes’s Theorem assures us that 9§c F e dr = O for every
such curve C; therefore F must be conservative. A simply connected domain D
does have the property specified above. We will not attempt a formal proof of this
topological fact here, but it should seem plausible if you recall the definition of
simple connectedness. A closed curve C in a simply connected domain D must be
able to shrink to a point in D without ever passing out of D. In so shrinking, it
traces out a surface in D. This is why Theorem 4 of Section 16.2 is valid for simply
connected domains.

Evaluate fc Fedr,where F = —yi +x3j — 7k, and C is the curve
of intersection of the cylinder x2? + y? = 1 and the plane 2x + 2y + z = 3 oriented
so as to have a counterclockwise projection onto the xy-plane.

Solution C is the oriented boundary of an elliptic disk S that lies in the plane
2x + 2y + z = 3 and has the circular disk R: x? + y? < 1 as projection onto the
xy-plane. (See Figure 16.16.) On S we have

NdS = (2i+2j + k) dx dy.

Also,
i J k
IF o2 3 3(x? +yHk
R dy 9z | "+ Ok
—y3 =P

Thus, by Stokes’s Theorem,

fF.dr:f/ curlFe NdS
C S

2 2 ! 37'[
=f/ 3x? +y )dxdy=27r/ 3rirdr=—.
R 0 2
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Zz>

c

Ry

Figure 16.17 Part of a sphere and a
disk with the same boundary

e

As with the Divergence Theorem, the principal importance of Stokes’s Theorem is
as a theoretical tool. However, it can also simplify the calculation of circulation
integrals such as the one in the previous example. It is not difficult to imag-
ine integrals whose evaluation would be impossibly difficult without the use of
Stokes’s Theorem or the Divergence Theorem. In the following example we use
Stokes’s Theorem twice, but the result could be obtained just as easily by using the
Divergence Theorem.

Find I = [[scurlF o NdS, where S is that part of the sphere

x2 4+ y% 4+ (z — 2)> = 8 that lies above the xy-plane, N is the unit outward normal
field on S, and

F = y2cosxzi+ x’e’%j — e k.

Solution The boundary, C, of Sis the circle x> + y?> = 4 in the x y-plane, oriented
counterclockwise as seen from the positive z-axis. (See Figure 16.17.) This curve
is also the oriented boundary of the plane disk D: x? + y? < 4, z = 0, with normal
field N = k. Thus, two applications of Stokes’s Theorem give

1=/f curlF.NdS:fF.dr:/f curlFekdA.
S C D

On D we have

d d
curlF e k = (a (xe¥?) — > (v cosxz))

=3x2 —2y.

By symmetry, [[,, ydA =0, so

2 2
I=3// xsz:3/ coszedG/ rdr = 127.
D 0 0

Remark A surface S satisfying the conditions of Stokes’s Theorem may no longer
do so if a single point is removed from it. An isolated boundary point of a surface is
not an orientable curve, and Stokes’s Theorem may therefore break down for such
a surface. Consider, for example, the vector field

F:—é— Y al

= — 1+
r x2+y2 x2+y

7

which is defined on the punctured disk D satisfying 0 < x> + y?> < a®. (See
Example 3 in Section 16.3.) If D is oriented with upward normal k, then its
boundary consists of the oriented, smooth, closed curve, C, given by x = a cos9,
y =asinf, (0 <6 < 2), and the isolated point (0, 0). We have

T/ sin®.  cosf . o .
Fedr = i+ j) e (—asinfi+ acosbj)do
C 0 a a

27
= / (sin® 6 4 cos?0) d6 = 2.
0




However,

d

1F = | —
cur [ax

(

X
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0 y
-2 (=L )|k=0
x2+y2> 3y< x2+y2)}

identically on D. Thus,

f/ curlF e NdS = 0,
D

and the conclusion of Stokes’s Theorem fails in this case.

| Exercises 16.5

1.

Evaluate ¢ xydx + yzdy + zx dz around the triangle with

C
vertices (1,0, 0), (0, 1,0), and (0, 0, 1), oriented clockwise
as seen from the point (1, 1, 1).

. Evaluate % ydx — x dy + z* dz around the curve C of
c

intersection of the cylinders z = y? and x> + y? = 4,
oriented counterclockwise as seen from a point high on the
z-axis.

. Evaluate / / curlF e NdS , where § is the hemisphere
S

X2+ y2 + 72 = a2, z > 0 with outward normal, and
F = 3yi — 2xzj + (x2 — y)k.

. Evaluate / / curl F « NdS. where S is the surface
S

x> 4 y2 +2(z — l)2 =6,z>0, N is the unit outward (away
from the origin) normal on S, and

. . 2,22
F=(xz—y cosi+x’ej+xyze’ TV 1k

. Use Stokes’s Theorem to show that

‘(fydx—l—zdy—i-xdz =3na,
C

where C is the suitably oriented intersection of the surfaces
x2+y2+22:a2andx+y+z=0.

. Evaluate f F e dr around the curve
C

r=costi+sintj+sin2tk, (0 <t <2m),
where

F=(e" - y)i+ (& +x)j+ k.

Hint: show that C lies on the surface z = 2xy.

7.

10.

Find the circulation of F = —yi + x2j + zk around the
oriented boundary of the part of the paraboloid

z =9 — x2 — y? lying above the xy-plane and having
normal field pointing upward.

. Evaluate % F o dr, where
C

F=ye'i+ (x% + eM)j + 22€%k,
and C is the curve
r(t) = (1 +cost)i+ (1 +sint)j+ (I —cost — sinr)k

for 0 <t < 2n. Hint: Use Stokes’s Theorem, observing that
C lies in a certain plane and has a circle as its projection onto
the xy-plane. The integral can also be evaluated by using the
techniques of Section 15.4.

. Let C; be the straight line joining (—1, 0, 0) to (1, 0, 0), and

let C; be the semicircle x> + y> =1,z =0, y > 0. Let S be
a smooth surface joining C; to C» having upward normal,
and let

F=(ax? —2)i+ (xy +y' +j+ By’ + Dk.
Find the values of & and 8 for which I = FedSis

S
independent of the choice of S, and find the value of / for
these values of « and 8.

Let C be the curve (x — 1) +4y? = 16,2x + y + 7 =3,
oriented counterclockwise when viewed from high on the
z-axis. Let

F = (z2 + y2 + sinxz)i + 2xy 4+ 2)j) + (xz + 2yz2)k.

Evaluate f F e dr.
C
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11. If C is the oriented boundary of surface S, and ¢ and v are N =ai+ bj + ck and has orientation inherited from that of

arbitrary smooth scalar fields, show that the plane. Show that the plane area enclosed by C is

fd)VIIJOdr: —% YV edr
C Cc 1
. E‘(ﬁ(bz—cy)dx+(cx—az)dy+(ay—bx)dz.
=f/(V¢xVW)oNdS, c
S

Is V¢ x Vi solenoidal? Find a vector potential for it.

12. Let C be a closed, non-self-intersecting, piecewise smooth 13. Use Stokes’s Theorem to prove Theorem 2 of Section 16.1.

plane curve in R3, which lies in a plane with unit normal

In this section we will show how the theory developed in this chapter can be used
to model concrete applied mathematical problems. We will look at two areas
of application—fluid dynamics and electromagnetism—and will develop a few of
the fundamental vector equations underlying these disciplines. Our purpose is to
illustrate the techniques of vector calculus in applied contexts, rather than to provide
any complete or even coherent introductions to the disciplines themselves.

Fluid Dynamics

Suppose that a region of 3-space is filled with a fluid (liquid or gas) in motion. Two
approaches can be taken to describe the motion. We could attempt to determine the
position, r = r(a, b, ¢, t) at any time ¢, of a “particle” of fluid that was located at
the point (a, b, ¢) at time ¢ = 0. This is the Lagrange approach. Alternatively, we
could attempt to determine the velocity, v(x, y, z, t), the density, §(x, y, z, ), and
other physical variables such as the pressure, p(x, y, z, t), at any time ¢ at any point
(x, y, z) in the region occupied by the fluid. This is the Euler approach.

We will examine the latter method and describe how the Divergence Theorem
can be used to translate some fundamental physical laws into equivalent mathemat-
ical equations. We assume throughout that the velocity, density, and pressure vary
smoothly in all their variables and that the fluid is an ideal fluid, that is, nonviscous
(it doesn’t stick to itself), homogeneous, and isotropic (it has the same properties
at all points and in all directions). Such properties are not always shared by real
fluids, so we are dealing with a simplified mathematical model that does not always
correspond exactly to the behaviour of real fluids.

Consider an imaginary closed surface S in the fluid, bounding a domain D.
We call S “imaginary” because it is not a barrier that impedes the flow of the fluid
in any way; it is just a means to concentrate our attention on a particular part of
the fluid. It is fixed in space and does not move with the fluid. Let us assume that
the fluid is being neither created nor destroyed anywhere (in particular, there are no
sources or sinks), so the law of conservation of mass tells us that the rate of change
of the mass of fluid in D equals the rate at which fluid enters D across S.

The mass of fluid in volume element dV at position (x, y, z) at time ¢ is
8(x,y,z,t)dV, sothe massin D at time ¢ is ﬂfD § dV. This mass changes at rate

£ o=l e
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As we noted in Section 15.6, the volume of fluid passing out of D through area
element d S at position (x, y, 2) in the interval from time ¢ to ¢ + dt is given by
v(x,y,z,t) e N dS dt, where N is the unit normal at (x, y, z) on S pointing out of
D. Hence, the mass crossing S outward in that time interval is §v o NdsSdt, and
the rate at which mass is flowing out of D across S at time 7 is

ﬁ sveNdS.
S

The rate at which mass is flowing info D is the negative of the above rate. Since
mass is conserved, we must have

// —dv_—# SVoNdS:—/// div (5v)dV,
S D

where we have used the Divergence Theorem to replace the surface integral with a
volume integral. Thus,

/// ( +div <5V>> av =0.

This equation must hold for any domain D in the fluid.

If a continuous function f satisfies [, p f(P)dV = 0 for every domain D,
then f(P) = O at all points P, for if there were a point Py such that f(FPy) # 0
(say f(Py) > 0), then, by continuity, f would be positive at all points in some
sufficiently small ball B centred at Py, and ﬂ 5 S (P)dV would be greater than 0.
Applying this principle, we must have

h
e thediv (OV) =
8t+ v (6v)

throughout the fluid. This is called the equation of continuity for the fluid. It is
equivalent to conservation of mass. Observe that if the fluid is incompressible then
§ is a constant, independent of both time and spatial position. In this case 95/dt = 0
and div (§v) = § div v. Therefore, the equation of continuity for an incompressible
fluid is simply

divy = 0 ;

The motion of the fluid is governed by Newton’s Second Law, which asserts that
the rate of change of momentum of any part of the fluid is equal to the sum of the
forces applied to that part. Again, let us consider the part of the fluid in a domain
D. At any time ¢ its momentum is [f], p dvdV and is changing at rate

)
//‘/l; E(Sv)dV.

This change is due partly to momentum crossing S into or out of D (the momentum
of the fluid crossing S), partly to the pressure exerted on the fluid in D by the fluid
outside, and partly to any external body forces (such as gravity or electromagnetic
forces) acting on the fluid. Let us examine each of these causes in turn.
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Momentum is transferred across S into D at the rate

- # v(sveN)ds.
S

The pressure on the fluid in D is exerted across S in the direction of the inward
normal —N. Thus, this part of the force on the fluid in D is

—# pNds.
S

The body forces are best expressed in terms of the force density (force per unit
mass), F. The total body force on the fluid in D is therefore

[[[ spav.

Newton’s Second Law now implies that

/ff ;_t(av)dv=—# v(av.N)dS—# des+/ff SFdV.
D S S D

Again, we would like to convert the surface integrals to triple integrals over D. If
we use the results of Exercise 29 of Section 16.4 and Exercise 2 below, we get

#pﬁdS:ff Vpdv,

S D

ﬂ v(&v.N)dS:fff (8(voV)v+vdiv(5v)) dav.
S D

Accordingly, we have

v 3
f// (33—: +v§+vdiv(5v)+6(v.V)v+Vp—8F>dV=0.
D

The second and third terms in the integrand cancel out by virtue of the continuity
equation. Since D is arbitrary, we must therefore have

3-5}- +5(veViv= ~-Vp+5F
This is the equation of motion of the fluid. Observe that it is not a linear partial
differential equation; the second term on the left is not linear in v.

Electromagnetism

In 3-space there are defined two vector fields that determine the electric and magnetic
forces that would be experienced by a unit charge at a particular point if it is moving
with unit speed. (These vector fields are determined by electric charges and currents
present in the space.) A charge go at position r = xi + yj 4+ zk moving with
velocity vy experiences an electric force goE(r), where E is the electric field, and a
magnetic force pogovo X H(r), where H is the magnetic field and 119 ~ 1.26 x 107°
N/ampere? is a physical constant called the permeability of free space. We will
look briefly at each of these fields but will initially restrict ourselves to considering
static situations. Electric fields produced by static charge distributions and magnetic
fields produced by static electric currents do not depend on time. Later we will
consider the interaction between the two fields when they are time dependent.
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Electrostatics

Experimental evidence shows that the value of the electric field at any point r is the
vector sum of the fields caused by any elements of charge located in 3-space. A
“point charge” ¢ at position s = £i 4 nj + ¢k generates the electric field

r-s

4:“ W . (Couiamb’s Law),
0

E(r) =

where €y ~ 8.85 x 1072 coulombs?/N-m? is a physical constant called the permit-
tivity of free space. This is just the field due to a point source of strength g /4meg
at s. Except at r = s the field is conservative, with potential

q i
dmey Ir —s|’

) = —

so for r # s we have curlE = 0. Also divE = 0, except at r = s where it is
infinite; in terms of the Dirac distribution, divE = (g/€0)8(x —&£)8(y —n)8(z — ¢).
(See Section 16.1.) The flux of E outward across the surface S of any region R
containing q is

#EoﬁldS: 4.
S €0

by analogy with Example 4 of Section 16.4.

Given a charge distribution of density p(&, n, £) in 3-space (so that the charge
in volume element dV = d§ dnd¢ atsis dg = pdV), the flux of E out of S due
to the charge in R is

foesas= Ll =L oo

If we apply the Divergence Theorem to the surface integral, we obtain

and since R is an arbitrary region,

This is the differential form of Gauss’s Law. See Exercise 3 below.
The potential due to a charge distribution of density p(s) in the region R is

p(S)
oir) = 47T€o //fR r—s’

__ /// o0&, n,0)dsdndt
4me RVOE—E2+ (=)l +(z =02

If p is continuous and vanishes outside a bounded region, the triple integral is con-
vergent everywhere (see Exercise 4 below), so E = V¢ is conservative throughout
3-space. Thus, at all points,
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Figure 16.18

ds

curlE = 0.
Since divE = div V¢ = V?¢, the potential ¢ satisfies Poisson’s equation

Vo = 2.
€p

In particular, ¢ is harmonic in regions of space where no charge is distributed.

Magnetostatics

Magnetic fields are produced by moving charges, that is, by currents. Suppose
that a constant electric current, /, is flowing in a filament along the curve F. It
has been determined experimentally that the magnetic field produced at position
r = xi + yj + zKk by the elements of current d/ = Ids along the filament add
vectorially and that the element at position s = £i 4+ nj + ¢k produces the field

L dsx{r—38)

P i (the Biot-Savart Law),

dHO) =

where ds = Tds, T being the unit tangent to F in the direction of the current.
Under the reasonable assumption that charge is not created or destroyed anywhere,
the filament F must form a closed circuit, and the total magnetic field at r due to
the current flowing in the circuit is

1 dsX(r —s)

A Jr r—s)?
Let A be the vector field defined by

1 d
A
4 F [r—s|
for ali r not on the filament F. If we make use of the fact that
1 _
v __ r—s ’
|r —s| [r—s)3

and the vector identity VX (¢F) = (V@) XF + ¢(VXF) (with F the vector ds,
which does not depend on r), we can calculate the curl of A:

V><A=i V(

] —
)x“ _ TS ds—H).
477,' F

r—s| Tan fy Ir—sP
Thus A is a vector potential for H, and divH = 0 at points off the filament. We
can also verify by calculation that curl H = 0 off the filament. (See Exercises 9-11

below.)

Imagine a circuit consisting of a straight filament along the z-axis with return
at infinite distance. The field H at a finite point will then just be due to the current
along the z-axis, where the current / is flowing in the direction of k, say. The
currents in all elements ds produce, at r, fields in the same direction, normal to the
plane containing r and the z-axis. (See Figure 16.18.) Therefore, the field strength
H = |H| at a distance a from the z-axis is obtained by integrating the elements

I sinf d¢ 1 adg

H— —— > - .
d dr a?+ (L —2)? 4m (a2 + (¢ — Z)2)3/2
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We have
I o0 d
=22 3 7 (Let? — 7 = atand.)
4 J_ (az +( - 1)2)
1 [ 1
dma J_np cosd 2ra

The field lines of H are evidently horizontal circles centred on the z-axis. If C, is
such a circle, having radius 4, then the circulation of H around C, is

1
% Hedr=—2nra=1.
C, 2ma

Observe that the circulation calculated above is independent of a. In fact, if C is any
closed curve that encircles the z-axis once counterclockwise (as seen from above),
then C and —C, comprise the oriented boundary of a washer-like surface S with
a hole in it through which the filament passes. Since curl H = 0 on S, Stokes’s
Theorem guarantees that

%Hodr:% Hedr=1.
c Ca

Furthermore, when C is very small (and therefore very close to the filament), most of
the contribution to the circulation of H around it comes from that part of the filament
which is very close to C. It therefore does not matter whether the filament is straight
or infinitely long. For any closed-loop filament carrying a current, the circulation
of the magnetic field around the oriented boundary of a surface through which
the filament passes is equal to the current flowing in the loop. This is Ampere’s
Circuital Law. The surface is oriented with normal on the side out of which the
current is flowing.

Now let us replace the filament with a more general current specified by a vector
density, J. This means that at any point s the current is flowing in the direction J(s)
and that the current crossing an area element 4.5 with unit normal Nis J e NdsS.
The circulation of H around the boundary C of surface S is equal to the total current
flowing across S, so

fHodrzf‘/JoNdS.
C S

By using Stokes’s Theorem, we can replace the line integral with another surface
integral and so obtain

// (curlH— J) e NdS = 0.

S

Since S is arbitrary, we must have, at all points,
curlH = ],

which is the pointwise version of Ampere’s Circuital Law. It can be readily checked
that, if

A(r):%/ff IS v
T r T —§|
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then H = curl A (so that A is a vector potential for the magnetic field H). Here, R
is the region of 3-space where J is nonzero. If J is continuous and vanishes outside
a bounded set, then the triple integral converges for all r (Exercise 4 below), and H
is everywhere solenoidal:

divH=0.

Maxwell’s Equations
The four equations obtained above for static electric and magnetic fields,

divE = p/¢ divH=0
curlE =0 curlH =],

require some modification if the fields E and H depend on time. Gauss’s Law
divE = p/ep remains valid, as does div H = 0, which expresses the fact that there
are no known magnetic sources or sinks (i.e., magnetic monopoles). The field lines
of H must be closed curves.

It was observed by Michael Faraday that the circulation of an electric field
around a simple closed curve C corresponds to a change in the magnetic flux

<I>:/fHoNdS
S

through any oriented surface S having boundary C, according to the formula

do 1
— =—— @ Eedr.
dt to Je

Applying Stokes’s Theorem to the line integral, we obtain

. d - oH .
ff curlEoNdS:ondr:—uo— /f HoNdS:—MO// —eoNdS.
S C dt S s Ot

Since S is arbitrary, we obtain the differential form of Faraday’s Law:

0H
l oty b i
curl E ’pf"ok 51

The electric field is irrotational only if the magnetic field is constant in time.

The differential form of Ampere’s Law, curl H = J, also requires modification.
If the electric field depends on time, then so will the current density J. Assuming
conservation of charge (charges are not produced or destroyed), we can show, by
an argument identical to that used to obtain the continuity equation for fluid motion
earlier in this section, that the rate of change of charge density satisfies

ap

— = —div].

at J
(See Exercise 5 below.) Thisis inconsistent with Ampere’s Law because divcurl H =
0, while divJ # O when p depends on time. Note, however, that p = ediv E im-
plies that

ap JE

—divy = L — eydiv 2=
iv ] 37 €o 1vat
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so div (J +€9dE/ at) = (. This suggests that, for the nonstatic case, Ampere’s Law
becomes

ol A

which indicates (as was discovered by Maxwell) that magnetic fields are not just

produced by currents, but also by changing electric fields.

Together the four equations

divE = p/¢

IE oH
urlE = —uo—
C Mo ar

divH=10

JE
curlH=J 4+ ¢,—
at

are known as Maxwell’s equations. They govern the way electric and magnetic
fields are produced in 3-space by the presence of charges and currents.

| Exercises 16.6

1. (Archimedes’ principle) A solid occupying region R with
surface S is immersed in a liquid of constant density 8. The
pressure at depth / in the liquid is 8gh, so the pressure
satisfies Vp = dg, where g is the (vector) constant
acceleration of gravity. Over each surface element dS on §
the pressure of the fluid exerts a force — pN d S on the solid.

(a) Show that the resultant “buoyancy force” on the solid is

e [l

Thus, the buoyancy force has the same magnitude as,
and opposite direction to, the weight of the liquid
displaced by the solid. This is Archimedes’ principle.

(b) Extend the above result to the case where the solid is
only partly submerged in the fluid.

[3)

. By breaking the vector F(G o N) into its separate
components and applying the Divergence Theorem to each
separately, show that

ﬂF(GoN)dS:/// (FdivG + (G e VF)dV,
S D

where N is the unit outward normal on the surface S of the
domain D.

3. (Gauss’s Law) Show that the flux of the electric field E
outward through a closed surface S in 3-space is 1/¢g times
the total charge enclosed by S.

4. If s=&i+nj+ ckand f(£, n, ¢) is continuous on B3 and
vanishes outside a bounded region, show that, for any fixed

r,
/// EAGUI] dé dnd¢ < constant,
gy Ir—si

This shows that the potentials for the electric and magnetic
fields corresponding to continuous charge and current
densities that vanish outside bounded regions exist
everywhere in R3. Hint: without loss of generality you can
assume r = 0 and use spherical coordinates.

. The electric charge density, p, in 3-space depends on time as

well as position if charge is moving around. The motion is
described by the current density, J. Derive the continuity
equation

ap
= = _div],
ar vJ

from the fact that charge is conserved.

. If b is a constant vector, show that

v 1 __ r—b .
[r —b| Ir —b)?

. If a and b are constant vectors, show that for r 5 b,

div a><i =0
Ir — b3

Hint: use identities (d) and (h) from Theorem 3 of
Section 16.2.

. Use the result of Exercise 7 to give an alternative proof that

divff dsx(r —s) _0
7 Ir—sp

Note that div refers to the r variable.
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15. Show that in a region of space containing no charges
(o = 0) and no currents (J = 0), bothU=Eand U=H
satisfy the wave equation

9. If a and b are constant vectors, show that forr # b,

—b r—b
curl axi— =—(aeV) .
Ir_bp |r_b|3 82U 2
— ="V,
912
Hint: use identity (e) from Theorem 3 of Section 16.2.
10. If F is any smooth vector field, show that where ¢ = /1/(eopo) = 3 % 10% m/s.

* 16. (Heat flow in 3-space) The heat content of a volume
element dV within a homogeneous solid is 8¢T dV, where §
%}_(ds * V)F(s) =0 and ¢ are constants (the density and specific heat of the solid
material), and T = T(x, y, z, t) is the temperature at time ¢
at position (x, y, z) in the solid. Heat always flows in the
direction of the negative temperature gradient and at a rate
proportional to the size of that gradient. Thus, the rate of

around any closed loop F. Hint: the gradients of the
components of F are conservative.

11. Verify that if r does not lic on F, then flow of heat energy across a surface element 4§ with normal
Nis —kVT ¢ NdS, where k is also a constant depending on
dsX(r —s) the material of the solid (the coefficient of thermal
curl — =0 .. « . -
r Ir— s)? conductivity). Use “conservation of heat energy” to show

that for any region R with surface S within the solid

Here, curl is taken with respect to the r variable.

oT .
12. Verify the formula curl A = H, where A is the magnetic ¢ f/:/ ar av =k ﬂ VT ¢NdS,
vector potential defined in terms of the steady-state current R S
density J.

where N is the unit outward normal on S. Hence, show that
heat flow within the solid is governed by the partial
differential equation

13. If A is the vector potential for the magnetic field produced
by a steady current in a closed-loop filament, show that
div A = O off the filament.

14. If A is the vector potential for the magnetic field produced 9T k_, k (2T 9 T 82T
by a steady, continuous current density, show that divA = 0 —==VT=_ ( + =+ ) .
everywhere. Hence, show that A satisfies the vector Poisson
equation V2A = —J.

ar 8¢ sc \ox2 3y | 8z2

In this optional section we will derive formulas for the gradient of a scalar field and
the divergence and curl of a vector field in terms of coordinate systems more general
than the Cartesian coordinate system used in the earlier sections of this chapter. In
particular, we will express these quantities in terms of the cylindrical and spherical
coordinate systems introduced in Section 14.6.

We denote by xyz-space the usual system of Cartesian coordinates (x, y, z) in
R3. A different system of coordinates [u, v, w] in xyz-space can be defined by a
continuous transformation of the form

x=x.v,w), y=ywv,w), 7=z, v,w).

If the transformation is one-to-one from a region D in uvw-space onto a region
R in xyz-space, then a point P in R can be represented by a triple [«, v, w], the
(Cartiesian) coordinates of the unique point Q in uvw-space which the transforma-
tion maps to P. In this case we say that the transformation defines a curvilinear
coordinate system in R and call [u, v, w] the curvilinear coordinates of P with
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respect to that system. Note that [, v, w] are Cartesian coordinates in their own
space (uvw-space); they are curvilinear coordinates in x yz-space.

Typically, we relax the requirement that the transformation defining a curvilin-
ear coordinate system be one-to-one, that is, that every point P in R should have a
unique set of curvilinear coordinates. It is reasonable to require the transformation
to be only locally one-to-one. Thus, there may be more than one point Q that
gets mapped to a point P by the transformation, but only one in any suitably small
subregion of D. For example, in the plane polar coordinate system

X =rcosf, y =rsinb,

the transformation is locally one-to-one from D, the half of the rf-plane where
0 < r < oo, to the region R consisting of all points in the xy-plane except the
origin. Although, say, [1, 0] and [1, 2] are polar coordinates of the same point in
the xy-plane, they are not close together in D. Observe, however, that there is still
a problem with the origin, which can be represented by {0, 6] for any 6. Since the
transformation is not even locally one-to-one at r = 0, we regard the origin of the
xy-plane as a singular point for the polar coordinate system in the plane.

m The cylindrical coordinate system [r, 6, z] in R® is defined by the
transformation

x =rcosé, y =rsin6, 7=z,

where r > 0. (See Section 14.6.) This transformation maps the half-space D given
by r > 0 onto all of xyz-space excluding the z-axis, and it is locally one-to-one.
We regard [r, 6, z] as cylindrical polar coordinates in all of xyz-space but regard
points on the z-axis as singular points of the system since the points [0, &, z] are
identical for any 9.

_u

m The spherical coordinate system [p, ¢, 6] is defined by the
transformation

x = psin¢g cosb, y = psingsinb, 7= pcoso,

where p > 0 and 0 < ¢ < 7. (See Section 14.6.) The transformation maps the
region D in p¢8-space given by p > 0, 0 < ¢ < m in a locally one-to-one way
onto x yz-space excluding the z-axis. The point with Cartesian coordinates (0, 0, z)
can be represented by the spherical coordinates [0, ¢, 6] for arbitrary ¢ and 6 if
z =0, by [z, 0, 8] for arbitrary 8 if z > 0, and by [|z|, 7, 6] for arbitrary 6 if z < 0.
Thus, all points of the z-axis are singular for the spherical coordinate system.

Coordinate Surfaces and Coordinate Curves

Let [u, v, w] be a curvilinear coordinate system in xyz-space, and let Py be a
nonsingular point for the system. Thus, the transformation

x =x(u, v, w), y=yu,v,w), z=z(u,v, w)
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Figure 16.19 u-, v-, and
w-coordinate surfaces

is locally one-to-one near Py. Let Py have curvilinear coordinates [ug, vo, wo]. The
plane with equation u = ug in uvw-space gets mapped by the transformation to a
surface in xyz-space passing through Py. We call this surface a u-surface and still
refer to it by the equation u = uy; it has parametric equations

x = x(ug, v, W), y = y(uo, v, w), z = z(up, v, w)
with parameters v and w. Similarly, the v-surface v = vy and the w-surface

w = wy pass through Py; they are the images of the planes v = vg and w = wy in
uvw-space.

Orthogonal curvilmear coordmates

in xyz-nspace if,
coordinate surfaces
mutually ngh;_ang}es, ‘

,vo,, and w = uy mtersect at Po at

Itis tacitly assumed that the coordinate surfaces are smooth at all nonsingular points,
so we are really assuming that their normal vectors are mutually perpendicular.
Figure 16.19 shows the coordinate surfaces through P for a typical orthogonal
curvilinear coordinate system.

Z

Pairs of coordinate surfaces through a point intersect along a coordinate curve
through that point. For example, the coordinate surfaces v = vy and w = wy
intersect along the u-curve with parametric equations

x =x(u,vp, wo), y=y(u,vo, wp), and z=z{(u, v, wo),

where the parameter is u. A unit vector @ tangent to the u-curve through Py is
normal to the coordinate surface u = ug there. Similar statements hold for unit
vectors v and W. For an orthogonal curvilinear coordinate system, the three vectors
4, ¥, and W form a basis of mutually perpendicular unit vectors at any nonsingular
point Py. (See Figure 16.19.) We call this basis the local basis at P,.
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m For the cylindrical coordinate system (see Figure 16.20), the coor-
dinate surfaces are:
circular cylinders with axis along the z-axis
vertical half-planes radiating from the z-axis
horizontal planes

(r-surfaces),
(6-surfaces),
(z-surfaces).

The coordinate curves are:

horizontal straight half-lines radiating from the z-axis
horizontal circles with centres on the z-axis
vertical straight lines

(r-curves),
(B-curves),
(z-curves).

cylinder r = constant

()

P=[r0,2z]

=

horizontal plane
Z = constant

vertical half-plane y

¢ = constant

P=[p, ¢, 0]

© = constant
sphere

@ = constant
vertical half-plane

X

Figure 16.20
coordinates

The coordinate surfaces for cylindrical

6 = constant

Figure 16.21
coordinates

The coordinate surfaces for spherical

For the spherical coordinate system (see Figure 16.21), the coordi-
nate surfaces are:
spheres centred at the origin
vertical circular cones with vertices at the origin
vertical half-planes radiating from the z-axis

( p-surfaces),
(¢-surfaces),
(0-surfaces).

The coordinate curves are:

half-lines radiating from the origin (p-curves),
vertical semicircles with centres at the origin (¢-curves),
horizontal circles with centres on the z-axis (6-curves).

Scale Factors and Differential Elements

For the rest of this section we assume that [, v, w] are orthogonal curvilinear
coordinates in xyz-space defined via the transformation

x =x(u, v, w), y =yu,v,w), z =z(u, v, w).

We also assume that the coordinate surfaces are smooth at any nonsingular point
and that the local basis vectors @, v, and W at any such point form a right-handed
triad. This is the case for both cylindrical and spherical coordinates. For spherical
coordinates, this is the reason we chose the order of the coordinates as [p, ¢, 6],
rather than [p, 8, ¢].

The position vector of a point P in xyz-space can be expressed in terms of the
curvilinear coordinates:

r=x,v,wi+ yu, v, w)j+ zu, v, wk.
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If we hold v = vy and w = wy fixed and let u vary, then r = r(u, vy, wo) defines a
u-curve in xyz-space. At any point P on this curve, the vector

or ox, dy, 9z
_— = —1 +
ou ou ou ou

is tangent to the u-curve at P. In general, the three vectors

or or or
—, — and —
ou av Jw

are tangent, respectively, to the u-curve, the v-curve, and the w-curve through P.
They are also normal, respectively, to the u-surface, the v-surface, and the w-surface
through P, so they are mutually perpendicular. (See Figure 16.19.) The lengths of
these tangent vectors are called the scale factors of the coordinate system.

The scale factors of the orthogonal curvilinear coordinate system [z, v, w)

are the three functions
w ar 4 ar _|or
- et au ’a v"‘"‘av ¥ W aw .

The scale factors are nonzero at a nonsingular point P of the coordinate system, so
the local basis at P can be obtained by dividing the tangent vectors to the coordinate
curves by their lengths. As noted previously, we denote the local basis vectors by
i, v, and w. Thus,

9 N ] N d
r_ h,u, o = h,V, and a
av

el = hy,W.
ou W

dw

The basis vectors u, ¥, and W will form a right-handed triad provided we have
chosen a suitable order for the coordinates u, v, and w.

m For cylindrical coordinates we have r = r cos 8i+r sin8j + zK, so

_—C()S01+ 1119 — = 6 9 d _—k
S y r s l+l 0S N an .
8 J 69 1 C .] a

Thus, the scale factors for the cylindrical coordinate system are given by

a
hy = |2
ar

or
dz

ar

=1, hy=|=
R PY’

=1,

=r, and h,=

and the local basis consists of the vectors

N
i
.

| 97§~'+fcos~6j, ;

See Figure 16.22. The local basis is right-handed.
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X

Figure 16.22 The local basis for cylindrical Figure 16.23 The local basis for spherical
coordinates coordinates

S ETOIEY  For spherical coordinates we have
r = psing cosfi+ psin¢g sinfj + p cos Pk.

Thus, the tangent vectors to the coordinate curves are

]
a—r =sin¢cosfi—+sin¢gsinbj+ cosgk,
0
ar . s .
5}; =pcos¢cosfi+ pcosgsindj— psingk,
ar . P . .
ry i —psingsinfi+ psingcosdj,

and the scale factors are given by

ar
-1 =g

or

i h ar in ¢
— =p, an = |—| = psing.
p Iy 6 39 Iy

h, =

The local basis consists of the vectors

p=singcosfi+singsindj+cosgpk
(;5 =cos¢cosfi+cosgsingdj—singk
0= —sinf i+ cosdj.

See Figure 16.23. The local basis is right-handed.

The volume element in an orthogonal curvilinear coordinate system is the volume
of an infinitesimal coordinate box bounded by pairs of u-, v-, and w-surfaces
corresponding to values u and u+-du, v and v+dv, and w and w +dw, respectively.
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See Figure 16.24. Since these coordinate surfaces are assumed smooth, and since
they intersect at right angles, the coordinate box is rectangular, and is spanned by
the vectors

3 9 )
O w=nodut, Cdv=h,dve. and 2% dw=hydwWw.
du v ow

Therefore, the volume element is given by

4 :huhthdudvdw ; -

(u, v, w+dw) ]
hydww
wdww av
h,dvv
(u, v, w)
Figure 16.24 The volume element N
for orthogonal curvilinear coordinates hydud (u+du, v, w)

Furthermore, the surface area elements on the u-, v-, and w-surfaces are the areas
of the appropriate faces of the coordinate box:

Area elements on coordinate surfaces

dS, = hhodvdw,  dS,=hh,dudw,  dS,=hh,dudv.

The arc length elements along the u-, v-, and w-coordinate curves are the edges of
the coordinate box:

Arc length elements on coordinate curves
ds, =h,du,  ds,=h,dv, ds,=h,dw.

I A  For cylindrical coordinates, the volume element, as shown in Sec-
tion 14.6, is

dV = h,hoh,drd6dz =rdrdfdz.

The surface area elements on the cylinder » = constant, the half-plane 6 = constant,
and the plane z = constant are, respectively,

dS, =rdfdz, dSy =drdz, and dS, =rdrdb.
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STETGTLR: N For spherical coordinates, the volume element, as developed in
Section 14.6, is

dV = h,hshs dpddp do = p*sing dp de dé.
The area element on the sphere p = constant is
dS, = hyhgdp do = p*sing d¢ de.
The area element on the cone ¢ = constant is
dSy = hyhgdpdb = psing dp db.
The area element on the half-plane 6 = constant is
dSp = hyhgdpdp = pdpde.

Grad, Div, and Curl in Orthogonal Curvilinear Coordinates
The gradient Vf of a scalar field f can be expressed in terms of the local basis at
any point P with curvilinear coordinates [u, v, w] in the form

Vf =Fa+ F,v+ F,w.
In order to determine the coefficients F,, F,, and F,, in this formula, we will
compare two expressions for the directional derivative of f along an arbitrary curve
in xyz-space.

If the curve C has parametrization r = r(s) in terms of arc length, then the
directional derivative of f along C is given by

df dfdu  9f dv  df dw

ds  duds dvds dwds’
On the other hand, this directional derivative is also given by df/ds = Vfe T,
where T is the unit tangent vector to C. We have
dr  drdu Ordv Or dw

T = — 4 ——+ — —
ds du ds+8v ds+8w ds
hduﬁ+h dvA+h dw ,
=h, — v—V+h, — W
ds ds ds
Thus,
df A du dv dw
— =V T=Fhu— F.hy, — thw_'
ds fe T ds iy ds + ds
Comparing these two expressions for df/ds along C, we see that
a a %)
Fuhu:_fv thvz—f7 thw=_f'
du v ow

Therefore, we have shown that

The gradient in orthogonal curvilinear coordinates

1af. 19f. 1 af.
vie i Heo 0L o
ey T
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Example 9

f(@,0,2)is

In terms of cylindrical coordinates, the gradient of the scalar field

Vfr0,2) = fA+1§£ +§]-;~

[SETLTIERTE  In terms of spherical coordinates, the gradient of the scalar field

flo,¢.0)is

Vi(p.$.0) = —afiﬂ—

Now consider a vector field F expressed in terms of the curvilinear coordinates:
Fu,v, w) = F,(u, v, wya + F,(u, v, w)v + F,(u, v, w)W.

The flux of F out of the infinitesimal coordinate box of Figure 16.24 is the sum of
the fluxes of F out of the three pairs of opposite surfaces of the box. The flux out
of the u-surfaces corresponding to # and u + du is

Fu+du,v,w)eudS, — Fu, v, w)eudS,
:(Fu (u+du, v, wh,(u+du,v, wWh,Wu—+du,v, w)
— F,(u, v, wh,(u, v, wh,u,v, w)) dvdw

=%(hvthu)du dvduw.

Similar expressions hold for the fluxes out of the other pairs of coordinate surfaces.

The divergence at P of F is the flux per unit volume out of the infinitesimal
coordinate box at P. Thus it is given by

The divergence in orthogonal curvilinear coordinates

1
Rihyhe

]
+ %(huthl)(uy b, ll))) + E(huhUFw(u’ v, w)):|

divF(u, v, u) = [a (hohwFu(u, v, w))

For cylindrical coordinates, h, = k, = 1, and hy = r. Thus, the
divergence of F = F,f + Fy0 + F,k is

a d )
L F) + oot (er):I

arF, lF 1 oF,  OF;

r

T P e
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m For spherical coordinates, h, = 1, hy = p, and hy = psing.
T . ~ e} 2 .

he divergence of the vector field F = F,p + Fyp + Fy0 is
1 a a3 ]
i ing F, F
divF = p281n¢[8p(p sing F,) + aq})(psmq& ) + a9(;0 9)]
1 1 1 8F9
) _(p ) osing 8¢( ¢) ,osmd) 90
: an 2 18F;  coto 1- 9F
= +—~F : e e
o 5 T 5ae T * T psing 08
|

To calculate the curl of a vector fiels expressed in terms of orthogonal curvilin-
ear coordinates we can make use of some previously obtained vector identities.
First, observe that the gradient of the scalar field f(u, v, w) = u is a/h,, so that
0 = &, Vu. Similarly, v = h, Vv and W = h,, Vw. Therefore, the vector field

F=Fu+ F,v+ F,w
can be written in the form
F=F,h,Vu+ F,h,Vv+ F,h,Vw.

Using the identity curl (f Vg) = Vf x Vg (see Exercise 13 of Section 16.2) we
can calculate the curl of each term in the expression above. We have

curl (F,h,Vu) = V(F,h,) x Vu
1 1 1 9 u
F.h, ——(Fh)V+ — —(Fh )W —
[h 3 —( )u+hv8 ( )V+hwaw( )W}Xhu
1

= _FuhuA
hhe aw eIV = o

1 N
= hhihe [ (Fuhy)(hy¥) — v(Fuhu)(hww):|-

(Fh)w

We have used the facts that x @ = 0, ¥ x i = —W, and W x @l = ¥ to obtain the
result above. This is why we assumed that the curvilinear coordinate system was
right-handed.

Corresponding expressions can be calculated for the other two terms in the
formula for carl F. Combining the three terms, we conclude that the curl of

F=Fu+ F,v+ F,w
is given by

The curl in orthogonal curvilinear coordinates
haa  hyV kW
1 a3 8 a

hohohe | 84 80  dw
F.hy Fyhy Fuhy,

curlE(u, v, w) =
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IR EN  For cylindrical coordinates, the curl of F = F,f + Fob + FKis

given by
P8k
Ly g8 9
curlF = 13 w5
Eo o rFy. F,
19F, 3K o9F,  8F, aF, Fy 10F,
=o)L P 0 ——— k
(rao 8z)r+(8z ar) +(3r+ rae)

_n

'ELICREE  For spherical coordinates, the curl of F = F,p + F¢(25 + F,0 is

given by
P pd psingd
corlF = ! ; g —a—
" plsing |8p 8¢ 26
by pkyopsingFy
1 Ta aF,
= — Fpy— —~
Ay [8¢(8m¢ 9) ae}p
1 aF,
[ £ sm¢——~(pFe)]¢
psing
1 aF,
6
+ - [ (pFy) — a¢]
3R],
i [(GOS¢)F9+(sm¢) ) ae]p

’ psing
aF aF,; |
%[F«M-p-—j- —————‘5]0-

o

1 F, A
[L - Ging) o — (psing) 5 | &

ap 3

|Exercises 16.7

In Exercises 1-2, calculate the gradients of the given scalar fields
expressed in terms of cylindrical or spherical coordinates.

1. f(r6.2) =rbz 2. flp,9,0) = pgt

In Exercises 3-8, calculate div F and curl F for the given vector

fields expressed in terms of cylindrical coordinates or spherical
coordinates.

3. F(r,0.2) = ri 4. F(r,0,7) =r0
5. F(p,$,0) =singp 6. F(p,9,0) = pd
7. F(p. ¢, 6) = pb 8. F(p,¢,0) =p°p

9. Let x = x(u, v), y = y(u, v) define orthogonal curvilinear

10.

11.

coordinates (¢, v) in the xy-plane. Find the scale factors,
local basis vectors, and area element for the system of
coordinates (i, v).

Continuing the previous exercise, express the gradient of a
scalar field f (u, v) and the divergence and curl of a vector
field F(u, v) in terms of the curvilinear coordinates.

Express the gradient of the scalar field f(r, 6) and the
divergence and curl of a vector field F(r, 8) in terms of plane
polar coordinates (r, 6).



12.

13.

The transformation

x =acoshucosv, y = asinhusinv

defines elliptical coordinates in the xy-plane. This
coordinate system has singular points at x = +a, y = 0.

(a) Show that the v-curves, u = constant, are ellipses with
foci at the singular points.

(b) Show that the u-curves, v = constant, are hyperbolas
with foci at the singular points.

(c) Show that the u-curve and the v-curve through a
nonsingular point intersect at right angles.

(d) Find the scale factors h, and &, and the area element
d A for the elliptical coordinate system.

Describe the coordinate surfaces and coordinate curves of
the system of elliptical cylindrical coordinates in xyz-space
defined by

x = acoshucosuv, y =asinhusinv, z=2.

14.

15.

16.
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The Laplacian V2 f of a scalar field f can be calculated as
div V. Use this method to calculate the Laplacian of the
function f(r, 8, z) expressed in terms of cylindrical
coordinates. (This repeats Exercise 33 of Section 14.6.)
Calculate the Laplacian V2 f = div V£ for the function
f(p, @, 0), expressed in terms of spherical coordinates.
(This repeats Exercise 34 of Section 14.6 but is now much
easier.)

Calculate the Laplacian V2§ = div V for a function
f(u, v, w) expressed in terms of arbitrary orthogonal
curvilinear coordinates (u, v, w).

Chapter Review

Key Ideas

e What do the following terms mean?

<
<
<&
<
<

the divergence of a vector field F
the curl of a vector field F
F is solenoidal. o F is irrotational.
a scalar potential < a vector potential

orthogonal curvilinear coordinates

o State the following theorems:

<

<

the Divergence Theorem ¢ Green’s Theorem

Stokes’s Theorem

Review Exercises

1.

. Find

. IfF = —zi+xj+ yk, what are the possible values of

If F = x%zi + (y%z + 3y)j + x°k, find the flux of F across
the part of the ellipsoid x% + y2 + 4z% = 16, where z > 0,
oriented with upward normal.

. Let 8 be the part of the cylinder x2 + y2 = 2ax between the

horizontal planes z = 0 and z = b, where b > 0. Find the
flux of F = xi + cos(z%)j + %k outward through S.

Gy? + 2xey2)dx + (2x2yey2)dy counterclockwise

C
around the boundary of the parallelogram with vertices (0, 0),
(2.0), (3, ),and (1, 1).

Fedr

C
around circles of radius a in the plane 2x + y + 2z = 77

. Let F be a smooth vector field in 3-space and suppose that,

for every a > 0, the flux of F out of the sphere of radius a
centred at the origin is (a® + 2a*). Find the divergence of

10.

11.

F at the origin.

. Let F = —yi + x cos(1 — x2 — y2)j + yzk. Find the flux of

curl F upward through a surface whose boundary is the curve
Z2ryi=1z=2

. LetF(r) = r*r, where r = xi+yj-+zkand r = |r|. For what

value(s) of A is F solenoidal on an open subset of 3-space? Is
F solenoidal on all of 3-space for any value of A?

. Given that F satisfies curl F = uF on 3-space, where w is a

nonzero constant, show that V2F + p2F = 0.

. Let P be a polyhedron in 3-space having » planar faces, Fj,

F,, ..., F,. Let N; be normal to F; in the direction outward
from P, and let N; have length equal to the area of face F;.
Show that

Zn:Ni =0
i=1

Also, state a version of this result for a plane polygon P.

Around what simple, closed curve C in the xy-plane does the
vector field

F= (2y3 —3y +xy2)i+ (x —x +x2y)j

have the greatest circulation?

Through what closed, oriented surface in R? does the vector
field

F = (4x +2x32)i — y(x* + 2)j — 3x22% + 4y’ )k

have the greatest flux?
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12. Find the maximum value of

%Fodr,
C

where F = xyzi + 3z — xyz)j + 4y — xZy)k, and C is
a simple closed curve in the plane x + y + z = 1 oriented
counterclockwise as seen from high on the z-axis. What curve
C gives this maximum?

Challenging Problems

1. (The expanding universe) Let v be the large-scale velocity
field of matter in the universe. (Large-scale means on the
scale of intergalactic distances; smali-scale motion such as
that of planetary systems about their suns, and even stars
about galactic centres, has been averaged out.) Assume that
v is a smooth vector field. According to present astronomical
theory, the distance between any two points is increasing, and
the rate of increase is proportional to the distance between the
points. The constant of proportionality, C, is called Hubble’s
constant. In terms of v, if r{ and r> are two points, then

(v(ry) —v(rp) e (ry —rp) = Clra — 1y |%.

Show that div v is constant, and find the value of the constant
in terms of Hubble’s constant. Hint: find the flux of v(r) out
of a sphere of radius € centred at ry and take the limit as €
approaches zero.

2. (Solid angle) Two rays from a point P determine an angle at
P whose measure in radians is equal to the length of the arc
ol the circle of radius 1 with centre at P lying between the
two rays. Similarly, an arbitrarily shaped half-cone K with
vertex at P odetermines a solid angle at P whose measure
in steradians (stereo + radians) is the area of that part of
the sphere of radius 1 with centre at P lying within K. For

example, the first octant of R is a half-cone with vertex at =

the origin. It determines a solid angle at the origin measuring
s x 2= T teradi
4m x — = — steradians,
8 2

since the area of the unit sphere is 4. (See Figure 16.25.)

(a) Find the steradian measure of the solid angle at the vertex
of aright-circular half-cone whose generators make angle
o with its central axis.

(b

~

If a smooth, oriented surface intersects the general half-
cone K but not at its vertex P, let S be the part of the
surface lying within K. Orient S with normal pointing
away from P. Show that the steradian measure of the
solid angle at P determined by K is the flux of r/|r|3
through S, where r is the vector from P to the point
(x,v,2).

solid angle

Figure 16.25

Integrals over moving domains

By the Fundamental Theorem of Calculus, the derivative with
respect to time ¢ of an integral of f(x, t) over a “moving interval”
[a(t), b(1)] is given by

4 b0 b(1) 4
— flx,tydx =/ —fx,Ndx
dt a0 a(t) at

db da
+f(b(t),z);i—[ — f(a(t),t)z.

The next three problems, suggested by Luigi Quartapelle of the
Politecnico di Milano, provide various extensions of this one-
dimensional result to higher dimensions. The calculations are
somewhat lengthy, so you may want to try to get some help from
a computer algebra system.

3. (Rate of change of circulation along a moving curve)

(a) Let F(r, t) be a smooth vector field in R? depending on
a parameter ¢, and let

G(s, 1) =F(r(s,1).1) =F(x(s, 1), y(s, 1), 2(x. 1), 1),

where r(s, t) = x(s, )i + y(s, 1)j + z(s, 1)k has contin-
uous partial derivatives of second order. Show that

a9
ot as as ot

Here, the curl V x F is taken with respect to the position
vector I.
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(b) For fixed t (which you can think of as time), r = r(s, 1), (c) Combine the results of (a) and (b) to show that
(a < s < b), represents parametrically a curve C; in R3.
The curve moves as ¢ varies; the velocity of any point on d
Cyis ve(s, 1) = dr/dt. Show that d—// FeNds
t
d aF oF . .
— | Fedr=| —edr+ | ((VxF)xvc)edr =[] —eNdS+ [[| (VeF)vseNdS
dt Je, c, ot : s, 0 5,

+F(rb.1). 1) eve (b, 1) = F(r(a, 1), 1) e ve(a, 1), + b Fxve)edr

C;
Hint: write
J b or where vg = dr/dt on S; is the ve}ocity of §,vc = 0r/ot
— Fedr = / -— <G . —> ds on C; is the velocity of C;, and N is the unit normal field
dr Je, a Ot on §; corresponding to its orientation.
_ / b [ i < Ge ﬁ ) * 5, (Rate of change of integrals over moving volumes) Let S,
- < 105 ot be the position at time ¢ of a smooth, closed surface in R? that
3 ar 9 ar varies smoothly with 7 and bounds at any time ¢ a region D;.
+ (— (G . —) - — (G . —))] ds. If N(r, ¢) denotes the unit outward (from D,) normal field on
dt ds ds at St, and vg(r, t) is the velocity of the point r on S; at time ¢,
show that
Now use the result of (a).
* 4. (Rate of change of flux through a moving surface) Let S, d of .
be a moving surface in R? smoothly parametrized (for each — / / / fdv = / / / ——dV + fvs eNdS
dt at
1) by D, D, M
r=r(u, v, t) =x@, v, i+ y@, v 0j+z(u, v, Ok, holds for smooth functions f(r, t). Hint: let AD; consist of
the points through which S; passes as ¢ increases to t + Ar.
where (u, v) belongs to a parameter region R in the uv-plane. The volume element ¢V in AD; can be expressed in terms of
Let F(r, t) = Fji+ F,j+ F3k be a smooth 3-vector function, the area element d S on §; by

and let G(u, v, 1) = F(r(u, v, 1), 1).

(a) Show that dV = veNdSA:.

0 Jr dr 0 Jr oOr
5 (Go [a X %]) o <G° I:E X %:D Show that
(e[ 1
v du ot —[f// f(r,t+At)dV—// f(l',t)dV}
At D1+A1 Df

oF ar Jr or ar or
= .[_X_]+(V.F)8—to[—— ] _ f(r,t+At)—f(r,t)dV
D, At

Tt du  dv du x v
(b) If C; is the boundary of S; with orientation corresponding 4 L f(r, 0 dV
to that of S;, use Green’s Theorem to show that At AD, ’

et +An) — f(r, 1)
L fz2) e
R

ou 3~ ov
ad ar 9dr
+ ™ Ge ™ X o dudv and show that the last integral — 0 as Ar — 0.




