De acuerdo—dijo Mente Profunda—. La respuesta a la Gran Pregunta...
—¡Sí!...
... de la Vida, el Universo y el Todo —añadió Mente Profunda
—¡Sí!...
—Es... —continuó Mente Profunda, e hizo una pausa.
—¡Sí!...
—Cuarenta y dos —afirmó Mente Profunda, con infinita calma y majestad.
—¡Cuarenta y dos! —se lamentó Loonquaw!. ¿Eso es todo lo que tienes que decir tras un trabajo de siete millones y medio de años?
—Lo he comprobado a fondo —dijo el computador—, y esa es la respuesta definitiva. Pienso que el problema, para ser franco contigo, es que nunca supiste realmente cuál era la pregunta.

Douglas Adams (1952-2001)
de *The Hitchhiker’s Guide to the Galaxy*

Introducción El cálculo considera dos problemas fundamentales. El problema de las pendientes consiste en calcular la pendiente de (o recta tangente a) una curva dada en un determinado punto de dicha curva. El problema de las áreas consiste en calcular el área de una región plana limitada por curvas y rectas. El cálculo diferencial se ocupa de la solución al problema de las pendientes. Como veremos, este problema tiene muchas aplicaciones en matemáticas y en otras disciplinas. De problema de las áreas se ocupa el cálculo integral, que consideraremos a partir del Capítulo 5.
La mayoría de las curvas no tienen centros obvios, de forma que la condición (iii) no es de utilidad para caracterizar sus tangentes. Las curvas que se muestran en la Figura 2.3 las condiciones (i) y (ii) tampoco se pueden usar para definir tangentes. En particular, la Figura 2.3(d) muestra una curva que no es «suave» en P, de forma que la curva no puede tener tangente en ese punto. La recta tangente debe tener la misma «dirección» que la curva en el punto de tangencia.

La definición razonable de tangente debe establecerse en términos de límites. Si Q es un punto de C diferente de P, la recta que pasa por P y Q se denomina secante. Esta recta gira sobre P a medida que Q se mueve por la curva. Si L es la recta que pasa por P cuya pendiente es el límite de las pendientes de las secantes PQ a medida que Q se aproxima a P por la curva C (Figura 2.4), se dice que dicha recta L es la tangente a la curva C en el punto P.

Como C es la gráfica de la función $y = f(x)$, entonces las rectas verticales sólo pueden cruzar a C una vez. Como $P = (x_0, f(x_0))$, un punto diferente Q de la gráfica debe tener una coordenada x diferente, por ejemplo $x_0 + h$, siendo $h \neq 0$. Por tanto, $Q = (x_0 + h, f(x_0 + h))$, y la pendiente de la recta PQ es

$$\frac{f(x_0 + h) - f(x_0)}{h}$$

Esta expresión se denomina cociente de Newton o cociente de diferencias de f en x_0. Nótese que h puede ser positivo o negativo, dependiendo de si Q está a la derecha o a la izquierda de P.
DEFINICIÓN 1 Tangentes no verticales

Supongamos una función f continua en $x = x_0$ y que existe

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = m$$

Entonces la recta de pendiente m que pasa por el punto $P = (x_0, f(x_0))$ se denomina **recta tangente** (o simplemente **tangente**) a la gráfica de $y = f(x)$ en el punto P. Una posible ecuación de la tangente es

$$y = m(x - x_0) + y_0$$
Ejemplo 1 Calcule la ecuación de la recta tangente a la curva \(y = x^2 \) en el punto \((1, 1)\).

Solución En este ejemplo \(f(x) = x^2 \), \(x_0 = 1 \), e \(y_0 = f(1) = 1 \). La pendiente de la tangente pedida es:

\[
m = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}
= \lim_{h \to 0} \frac{(1 + h)^2 - 1}{h}
= \lim_{h \to 0} \frac{1 + 2h + h^2 - 1}{h}
= \lim_{h \to 0} \frac{2h + h^2}{h}
= \lim_{h \to 0} (2 + h) = 2
\]

De acuerdo con lo anterior, la ecuación de la recta tangente en \((1, 1)\) es \(y = 2(x - 1) + 1 \), o \(y = 2x - 1 \). Véase la Figura 2.5.

![Figura 2.5] Tgante a la curva \(y = x^2 \) en el punto \((1, 1)\).

La Definición 1 considera sólo tangentes que tienen pendientes finitas y, por tanto, que no son verticales. Es también posible que la gráfica de una función tenga una tangente *vertical*.

Ejemplo 2 Considere la gráfica de la función \(f(x) = \sqrt[3]{x} = x^{1/3} \), que se muestra en la Figura 2.6. La gráfica es una curva suave, y parece evidente que el eje \(y \) es tangente a esta curva en el origen. Calculemos el límite del cociente de Newton para \(f \) en \(x = 0 \).

\[
\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{h^{1/3}}{h} = \lim_{h \to 0} \frac{1}{h^{2/3}} = \infty
\]

Aunque el límite no existe, la pendiente de la recta secante que pasa por el origen y por cualquier otro punto \(Q \) de la curva tiende a infinito cuando \(Q \) se aproxima al origen por cualquier lado de la curva.

![Figura 2.6] El eje y es tangente a \(y = x^{1/3} \) en el origen.

Ejemplo 3 Por otra parte, la función \(f(x) = x^{2/3} \), cuya gráfica se muestra en la Figura 2.7, no tiene tangente en el origen porque no es «suave» en ese punto. En este caso el cociente de Newton es

\[
\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{h^{2/3}}{h} = \lim_{h \to 0} \frac{1}{h^{1/3}}
\]

no existe.
que no tiene límite cuando \(h \) tiende a cero (el límite por la derecha es \(\infty \) y por la izquierda es \(-\infty \)). Se dice que la curva tiene un vértice en el origen. Un vértice es un punto infinitamente agudo. Si viajáramos por la curva, al llegar al origen tendríamos que parar y girar 180°.

![Figura 2.7] Esta gráfica no tiene tangente en el origen.

A la luz de los dos ejemplos anteriores, podemos extender la definición de recta tangente para contemplar el caso de tangentes verticales:

DEFINICIÓN 2
Tangentes verticales

Supongamos una función \(f \) continua en \(P = (x_0, y_0) \), siendo \(y_0 = f(x_0) \); si

\[
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \infty \quad \text{o} \quad \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty
\]

entonces la recta vertical \(x = x_0 \) es tangente a la gráfica de \(y = f(x) \) en \(P \). Si el límite del cociente de Newton no existe y la causa es otra diferente a la de valer \(\infty \) o \(-\infty \), la gráfica de \(y = f(x) \) no tiene tangente en el punto \(P \).

Ejemplo 4 ¿Tiene la gráfica de \(y = |x| \) tangente en \(x = 0 \)?

Solución En este caso el cociente de Newton es:

\[
\frac{|0 + h| - |0|}{h} = \frac{|h|}{h} = \text{sgn} h = \begin{cases} 1, & \text{si } h > 0 \\ -1, & \text{si } h < 0 \end{cases}
\]

Como \(\text{sgn} h \) tiene límites diferentes por la izquierda y por la derecha en \(x = 0 \) (concretamente, 1 y -1), el cociente de Newton no tiene límite cuando \(h \to 0 \), por lo que \(y = |x| \) no tiene recta tangente en \((0, 0)\) (véase la Figura 2.8). La gráfica presenta un quiebre en el origen, cambia súbitamente de dirección y no es suave en ese punto. Las curvas sólo tienen tangentes en los puntos donde son suaves. Las gráficas de \(y = x^{2/3} \) e \(y = |x| \) tienen tangentes en todos sus puntos excepto en el origen, que es el punto donde no se comportan suavemente.

![Figura 2.8] \(y = |x| \) no tiene tangente en el origen.
DEFINICIÓN 3 Pendiente de una curva

La pendiente de una curva C en un punto P es la pendiente de la recta tangente a C en P si existe dicha recta tangente. Concretamente, la pendiente de la gráfica de $y = f(x)$ en el punto x_0 es

$$
limit_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}\n$$

Ejemplo 5 Calcule la pendiente de la curva $y = x/(3x + 2)$ en el punto $x = -2$.

Solución Si $x = -2$, entonces $y = 1/2$, y la pendiente pedida es

$$m = limit_{h \to 0} \frac{-2 + h}{3(-2 + h) + 2} \frac{1}{2}$$

$$m = limit_{h \to 0} \frac{-4 + 2h - (-6 + 3h + 2)}{2(-6 + 3h + 2)h}$$

$$m = limit_{h \to 0} \frac{-h}{2h(-4 + 3h)} = limit_{h \to 0} \frac{-1}{2(-4 + 3h)} = \frac{1}{8}$$

Normales

Si una curva C tiene una recta tangente L en un punto P, la recta perpendicular a L que pasa por P se denomina normal a C en P. Si L es horizontal, entonces N es vertical, y si L es vertical, entonces N es horizontal. Si L no es ni vertical ni horizontal, entonces, como se indica en la Sección P.2, la pendiente de N es el inverso cambiado de signo de la pendiente de L, es decir,

$$pendiente de la normal = \frac{-1}{pendiente de la tangente}$$

Ejemplo 6 Calcule la ecuación de la normal a $y = x^2$ en el punto $(1, 1)$.

Solución Como vimos en el Ejemplo 1, la tangente a $y = x^2$ en $(1, 1)$ tiene pendiente 2. Por tanto, la pendiente de la normal es $-1/2$, y su ecuación es

$$y - 1 = -\frac{1}{2} (x - 1) \quad o \quad y = -\frac{x}{2} + \frac{3}{2}$$

Ejemplo 7 Calcule las ecuaciones de las rectas tangente y normal a la curva $y = \sqrt{x}$ en el punto $(4, 2)$.

Solución La pendiente de la tangente en $(4, 2)$ es (Figura 2.9)

$$m = limit_{h \to 0} \frac{\sqrt{4+h}-2}{h} = limit_{h \to 0} \frac{\sqrt{4+h}-2}{h} \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2}$$

$$= limit_{h \to 0} \frac{4+h-4}{h(\sqrt{4+h}+2)}$$

$$= limit_{h \to 0} \frac{1}{\sqrt{4+h}+2} = \frac{1}{4}$$
La ecuación de la recta tangente es
\[y = \frac{1}{x} (x - 4) + 2 \quad \text{o} \quad x - 4y + 4 = 0 \]
y la normal tiene pendiente \(-4\) y, por tanto, su ecuación es
\[y = -4(x - 4) + 2 \quad \text{o} \quad y = -4x + 18 \]

Ejercicios 2.1

En los Ejercicios 1-12, calcule la ecuación de la recta tangente a la curva dada en el punto indicado.

1. \(y = 3x - 1 \) en \((1, 2)\)
2. \(y = \frac{1}{2} x \) en \((a, a/2)\)
3. \(y = 2x^2 - 5 \) en \((2, 3)\)
4. \(y = 6 - x - x^2 \) en \(x = -2\)
5. \(y = x^3 + 8 \) en \(x = -2\)
6. \(y = \frac{1}{x^2} + 1 \) en \((0, 1)\)
7. \(y = \sqrt{x + 1} \) en \(x = 3\)
8. \(y = \frac{1}{x} \) en \(x = 9\)
9. \(y = \frac{2x}{x + 2} \) en \(x = 2\)
10. \(y = \sqrt{5} - x^2 \) en \(x = 1\)
11. \(y = x^2 \) en \(x = x_0\)
12. \(y = \frac{1}{x} \) en \(x = \frac{a}{1}\)

¿Tienen las gráficas de las funciones \(f \) de los Ejercicios 13-17 tangentes en los puntos dados? Si es así, ¿cómo es la recta tangente?

13. \(f(x) = \sqrt{|x|} \) en \(x = 0\)
14. \(f(x) = (x - 1)^{4/3} \) en \(x = 1\)
15. \(f(x) = (x + 2)^{3/5} \) en \(x = -2\)
16. \(f(x) = |x^2 - 1| \) en \(x = 1\)
17. \(f(x) = \begin{cases} \sqrt{x} & \text{si } x \geq 0 \\ -\sqrt{-x} & \text{si } x < 0 \end{cases} \) en \(x = 0\)
18. Calcule la pendiente de la curva \(y = x^2 - 1 \) en el punto \(x = x_0 \). ¿Cuál es la ecuación de la tangente a \(y = x^2 - 1 \) cuya pendiente es \(-3\)?
19. (a) Calcule la pendiente de \(y = x^3 \) en el punto \(x = a \).
 (b) Calcule las ecuaciones de las rectas tangentes a \(y = x^3 \) cuya pendiente es \(3\).
20. Calcule todos los puntos de la curva \(y = x^3 - 3x \) cuya tangente es paralela al eje \(x \).
21. Calcule todos los puntos de la curva \(y = x^3 - x + 1 \) cuya tangente es paralela a la recta \(y = 2x + 5 \).
22. Calcule todos los puntos de la curva \(y = 1/x \) cuya tangente es perpendicular a la recta \(y = 4x - 3 \).
23. ¿Para qué valor de la constante \(k \) es la recta \(x + y = k \) normal a la curva \(y = x^2 \)?
24. ¿Para qué valor de la constante \(k \) las curvas \(y = kx^2 \) e \(y = k(x - 2)^2 \) se cortan formando ángulos rectos?
 Sugerencia: ¿Dónde se cortan las curvas? ¿Qué valen sus pendientes allí?

Utilice una herramienta gráfica para dibujar las siguientes curvas. ¿Dónde tienen las curvas tangente horizontal? ¿Hay algún punto donde las curvas no tengan tangente?

25. \(y = x^3(5 - x)^2 \)
26. \(y = 2x^2 - 3x^2 - 12x + 1 \)
27. \(y = |x^2 - 1| - x \)
28. \(y = |x + 1| - |x - 1| \)
29. \(y = (x^2 - 1)^{1/3} \)
30. \(y = (x^2 - 1)^{2/3} \)

31. Si la recta \(L \) es tangente a la curva \(C \) en el punto \(P \), entonces el ángulo entre \(L \) y la secante \(PQ \) entre \(P \) y otro punto \(Q \) de \(C \) tiende a \(0 \) cuando \(Q \) se acerca a \(P \) por la recta \(C \). ¿Es cierto lo contrario? si el ángulo entre \(PQ \) y la recta \(L \) (que pasa por \(P \)) tiende a \(0 \), debe ser \(L \) tangente a \(C \)?

32. Sea \(P(x) \) un polinomio. Si \(a \) es un número real, entonces \(P(x) \) se puede expresar de la forma
 \[P(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \ldots + a_n(x - a)^n \]
 para algún \(n \geq 0 \). Si \(\ell(x) = m(x - a) + b \), demuestre que la recta \(y = \ell(x) \) es tangente a la gráfica de \(y = P(x) \) en \(x = a \) siempre que \(P(x) - \ell(x) = (x - a)^2Q(x) \), siendo \(Q(x) \) un polinomio.
2.2 La derivada

Una línea recta tiene la propiedad de que su pendiente es la misma en todos sus puntos. Sin embargo, en cualquier otra curva la pendiente puede variar de un punto a otro. Por tanto, la pendiente de la gráfica \(y = f(x) \) en el punto \(x \) es a su vez una función de \(x \). Si en un punto \(x \) de una gráfica, la pendiente es finita, se dice que \(f \) es diferenciable, y se denomina a la pendiente derivada de \(f \). La derivada es, por tanto, el límite del cociente de Newton.

DEFINICIÓN 4

La **derivada** de una función \(f \) es otra función \(f' \) definida como

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

en todos los puntos \(x \) donde el límite exista (sea un número finito). Si existe \(f'(x) \), se dice que \(f \) es **diferenciable** en \(x \).

El dominio de la derivada \(f' \) (léase «f prima») es el conjunto de números \(x \) del dominio de \(f \) donde la gráfica de \(f \) tiene una tangente no vertical, y el valor \(f'(x_0) \) de \(f' \) en un punto \(x_0 \) es la pendiente de la tangente a \(y = f(x) \) en dicho punto. Por tanto, la ecuación de la recta tangente a \(y = f(x) \) en el punto \((x_0, f(x_0)) \) es

\[
y = f(x_0) + f'(x_0)(x - x_0)
\]

El dominio \(\mathcal{D}(f') \) de \(f' \) puede ser menor que el dominio \(\mathcal{D}(f) \) de \(f \) dado que aquél contiene sólo los puntos de \(\mathcal{D}(f) \) donde \(f \) es diferenciable. Los valores de \(x \) en \(\mathcal{D}(f) \) donde \(f \) no es diferenciable y que no son extremos de \(\mathcal{D}(f) \) se denominan **puntos singulares** de \(f \).

Observación El valor de la derivada de \(f \) en un punto particular \(x_0 \) se puede expresar como un límite de dos formas:

\[
f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to x_0} \frac{f(x) - f(x_0)}{x - x_0}
\]

En el segundo límite \(x_0 + h \) se sustituye por \(x \), de modo que \(h = x - x_0 \), y la condición \(h \to 0 \) es equivalente a \(x \to x_0 \).

El proceso de calcular la derivada \(f' \) de una función dada se denomina **diferenciación**. Muchas veces se puede dibujar la gráfica de \(f' \) directamente a partir de la de \(f \) visualizando las pendientes, procedimiento que se denomina **diferenciación gráfica**. En la Figura 2.10 las gráficas de \(f' \) y \(g' \) se obtienen midiendo las pendientes de los correspondientes puntos de las gráficas de \(f \) y \(g \) que hay encima de ellas. El valor de la gráfica \(y = f'(x) \) en \(x \) es la pendiente de la gráfica de \(y = f(x) \) en \(x \). Nótese que \(-1 \) y \(1 \) son puntos singulares de \(f \). Aunque \(f(-1) \) y \(f(1) \) están definidos, \(f'(-1) \) y \(f'(1) \) no están definidos. La gráfica de \(f \) no tiene recta tangente en \(-1 \) ni en \(1 \).

Una función \(f \) es diferenciable en un conjunto \(S \) si es diferenciable en todo punto \(x \) de \(S \). En general, las funciones que encontramos están definidas en intervalos o en uniones de intervalos. Si \(f \) está definida en un intervalo cerrado \([a, b] \), la Definición 4 no contempla la existencia de derivada en los extremos \(x = a \) o \(x = b \) (¿por qué?). Como hiciéramos para la continuidad en la Sección 1.4, vamos a extender la definición considerando la **derivada por la derecha** en \(x = a \) y la **derivada por la izquierda** en \(x = b \):

\[
f'_+(a) = \lim_{h \to 0^+} \frac{f(a + h) - f(a)}{h}, \quad f'_-(b) = \lim_{h \to 0^-} \frac{f(b + h) - f(b)}{h}
\]
Diremos ahora que \(f \) es diferenciable en \([a, b]\) si existe \(f'(x) \) para todo \(x \) en \((a, b)\) y existen también \(f'_{+}(a) \) y \(f'_{-}(b) \).

Algunas derivadas importantes

Presentaremos a continuación algunos ejemplos de cálculo algebraico de derivadas a partir de su definición. Algunos de los ejemplos serán los bloques básicos a partir de los cuales construiremos derivadas más complicadas. Se recogen en la Tabla 1, que se presentará posteriormente en esta sección, y es conveniente memorizarlas.

Ejemplo 1 (Derivada de una función lineal) Demuestre que si \(f(x) = ax + b \), entonces \(f'(x) = a \).

Solución El resultado es evidente observando la gráfica de \(f \) (Figura 2.11), pero realizaremos el cálculo utilizando la definición:

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{a(x + h) + b - (ax + b)}{h} = \lim_{h \to 0} \frac{ah}{h} = a
\]

Figura 2.11 La derivada de la función lineal \(f(x) = ax + b \) es la función constante \(f'(x) = a \).
Un caso especial importante del Ejemplo 1 es que la derivada de una función constante es la función cero:

Si \(g(x) = c \) (constante), entonces \(g'(x) = 0 \)

Ejemplo 2 Utilizando la definición, calcule las derivadas de

(a) \(f(x) = x^2 \),
(b) \(g(x) = \frac{1}{x} \),
(c) \(h(x) = \sqrt{x} \)

Solución Las Figuras 2.12-2.14 muestran las gráficas de las funciones y de sus derivadas.

(a) \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)

\[= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} \]

\[= \lim_{h \to 0} \frac{2hx + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x \]

(b) \(g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \)

\[= \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x} \]

\[= \lim_{h \to 0} \frac{x - (x+h)}{h(x+h)} = \lim_{h \to 0} \frac{1}{(x+h)x} = \frac{1}{x^2} \]
(c) \[k'(x) = \lim_{h \to 0} \frac{k(x + h) - k(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h} \times \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}} = \lim_{h \to 0} \frac{x + h - x}{h(\sqrt{x + h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x + h} + \sqrt{x}} = \frac{1}{2\sqrt{x}} \]

Notese que \(k \) no es diferenciable en el punto \(x = 0 \).

Las tres derivadas calculadas en el Ejemplo 2 son casos particulares de la **regla general de la potencia**:

Si \(f(x) = x^r \), entonces \(f'(x) = r x^{r-1} \)

Esta fórmula, que verificaremos en la Sección 3.3, es válida para todos los valores de \(r \) y \(x \) para los que \(x^{r-1} \) tenga sentido como número real.

Ejemplo 3 (Diferenciación de potencias)

Si \(f(x) = x^{5/3} \), entonces \(f'(x) = \frac{5}{3} x^{(5/3)-1} = \frac{5}{3} x^{2/3} \) para todo \(x \) real.

Si \(g(t) = \frac{1}{\sqrt{t}} = t^{-1/2} \), entonces \(g'(t) = -\frac{1}{2} t^{-1/2-1} = -\frac{1}{2} \frac{1}{2} t^{-3/2} \) para \(t > 0 \).

Posteriormente demostraremos todos los casos de la regla general de la potencia. Por ahora ofrecemos una demostración del caso \(r = n \), un entero positivo, basada en la **factorización de una diferencia de potencias n-ésimas**:

\[a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \cdots + ab^{n-2} + b^{n-1}) \]

(Compruebe que la fórmula es correcta multiplicando los dos factores del miembro derecho). Si \(f(x) = x^n \), \(a = x + h \) y \(b = x \), entonces \(a - b = h \) y

\[f'(x) = \lim_{h \to 0} \frac{(x + h)^n - x^n}{h} = \lim_{h \to 0} \frac{h[(x + h)^{n-1} + (x + h)^{n-2}x + (x + h)^{n-3}x^2 + \cdots + x^{n-1}]}{h} = nx^{n-1} \]

En la Sección 2.3 se presentará una prueba alternativa basada en la regla del producto e inducción matemática. El método de factorización utilizado anteriormente se puede utilizar también para demostrar la regla general de la potencia para enteros negativos, \(r = -n \), e inversos de enteros, \(r = 1/n \) (véanse los Ejercicios 50 y 52 al final de esta sección).
Ejemplo 4 (Diferenciación de la función valor absoluto) Verifique que:

Si \(f(x) = |x| \), entonces \(f'(x) = \frac{x}{|x|} = \text{sgn} x \)

Solución Tenemos que

\[
 f(x) = \begin{cases}
 x, & \text{si} \ x \geq 0 \\
 -x, & \text{si} \ x < 0
 \end{cases}
\]

Por tanto, teniendo en cuenta el Ejemplo 1 anterior, \(f'(x) = 1 \) si \(x > 0 \) y \(f'(x) = -1 \) si \(x < 0 \). Además, el Ejemplo 4 de la Sección 2.1 demuestra que \(f \) no es diferenciable en \(x = 0 \), que es un punto singular de \(f \). Entonces (véase la Figura 2.15),

\[
 f'(x) = \begin{cases}
 1, & \text{si} \ x > 0 \\
 -1, & \text{si} \ x < 0
 \end{cases} = \frac{x}{|x|} = \text{sgn} x
\]

Figura 2.15 La derivada de \(|x| \) es \(\text{sgn} x = x/|x| \).

La Tabla 1 muestra las derivadas elementales calculadas hasta ahora. A partir de la Sección 2.3 desarrollaremos reglas generales para calcular derivadas de funciones que se obtienen combinando funciones más simples. De esa forma, rararamente tendremos que recurrir a la definición de derivada ni al cálculo de límites para obtener derivadas. Es importante, sin embargo, recordar las derivadas de algunas funciones elementales. Conviene memorizar las de la Tabla 1.

<table>
<thead>
<tr>
<th>Función</th>
<th>Derivada</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) (constante)</td>
<td>0</td>
</tr>
<tr>
<td>(x)</td>
<td>1</td>
</tr>
<tr>
<td>(x^2)</td>
<td>2x</td>
</tr>
<tr>
<td>(x^{-1})</td>
<td>(-x^{-2})</td>
</tr>
<tr>
<td>(\sqrt{x})</td>
<td>(\frac{1}{2\sqrt{x}}) ((x > 0))</td>
</tr>
<tr>
<td>(x^r)</td>
<td>(rx^{r-1}) ((x^{-1}) real)</td>
</tr>
<tr>
<td>(</td>
<td>x</td>
</tr>
</tbody>
</table>

Notación de Leibniz

Como las funciones se pueden escribir de diferentes formas, resulta de utilidad tener más de una notación para representar las derivadas. Si \(y = f(x) \), se puede usar la variable dependiente \(y \) para
representar la función, e indicar la derivada de dicha función con respecto a \(x \) de alguna de las siguientes formas:

\[
D_x y = y' = \frac{dy}{dx} = \frac{d}{dx} f(x) = f'(x) = D_x f(x) = D f(x)
\]

En las formas que usan \(D_x \) se puede omitir el subíndice \(x \) si la variable de diferenciación es obvia. Frecuentemente, la forma más conveniente de referirse a la derivada de una función dada explícitamente como una expresión en la variable \(x \) es escribir \(\frac{d}{dx} \) delante de la expresión. El símbolo \(\frac{d}{dx} \) es el operador diferencial y debe leerse «derivada con respecto a \(x \) de ...». Por ejemplo,

\[
\frac{d}{dx} x^2 = 2x \quad \text{(la derivada con respecto a } x \text{ de } x^2 \text{ es } 2x)
\]

\[
\frac{d}{dx} \sqrt{x} = \frac{1}{2\sqrt{x}}
\]

\[
\frac{d}{dt} e^{100} = 100e^{100}
\]

si \(y = u^3 \), entonces \(\frac{dy}{du} = 3u^2 \)

El valor de la derivada de una función en un punto particular \(x_0 \) de su dominio se puede expresar también de diversas formas:

\[
D_x y \bigg|_{x=x_0} = y' \bigg|_{x=x_0} = \frac{dy}{dx} \bigg|_{x=x_0} = \frac{d}{dx} f(x) \bigg|_{x=x_0} = f'(x_0) = D_x f(x_0)
\]

El símbolo \(\bigg|_{x=x_0} \) se denomina símbolo de evaluación. Significa que la expresión que lo precede debe ser evaluada en \(x = x_0 \). Por ejemplo,

\[
\frac{d}{dx} x^4 \bigg|_{x=-1} = 4x^3 \bigg|_{x=-1} = 4(-1)^3 = -4
\]

No hay que confundir las expresiones

\[
\frac{d}{dx} f(x) \quad \text{y} \quad \frac{d}{dx} f(x) \bigg|_{x=x_0}
\]

La primera expresión representa a la función, \(f(x) \). La segunda representa un número, \(f(x_0) \).

Presentamos a continuación otro ejemplo en el que la derivada se calcula a partir de la definición, esta vez para una función algo más complicada.

Ejemplo 5 Utilice la definición de derivada para calcular \(\frac{d}{dx} \left(\frac{x}{x^2 + 1} \right) \bigg|_{x=2} \).
Las notaciones \(\frac{dy}{dx} \) y \(\frac{d}{dx} f(x) \) se denominan **notaciones de Leibniz** de la derivada, tras el trabajo de Gottfried Wilhelm Leibniz (1646-1716), uno de los creadores del cálculo, que utilizó esas notaciones. Las ideas principales del cálculo fueron desarrolladas independientemente por Leibniz e Isaac Newton (1643-1727). Newton utilizó notaciones similares a las primas (\(y' \)) que hemos usado aquí.

La notación de Leibniz viene sugerida por la definición de derivada. El cociente de Newton \(\frac{f(x + h) - f(x)}{h} \), cuyo límite se toma para calcular la derivada \(\frac{dy}{dx} \), se puede escribir en la forma \(\frac{\Delta y}{\Delta x} \), donde \(\Delta y = f(x + h) - f(x) \) es el incremento de \(y \), y \(\Delta x = (x + h) - x = h \) es el correspondiente incremento de \(x \), cuando se pasa del punto \((x, f(x)) \) al punto \((x + h, f(x + h)) \) en la gráfica de \(x \) (véase la Figura 2.16). \(\Delta \) es la letra griega delta mayúscula. Utilizando símbolos:

\[
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}
\]

Figura 2.16

\[
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}
\]
Diferenciales

El cociente de Newton $\Delta y/\Delta x$ es realmente un cociente de dos cantidades, Δy y Δx. Sin embargo, no está claro del todo que la derivada dy/dx, el límite de $\Delta y/\Delta x$ cuando Δx tiende a cero, se pueda considerar como un cociente. Si y es una función continua de x, entonces Δy tiende a cero cuando Δx tiende a cero, por lo que dy/dx parece ser la cantidad sin sentido 0/0. No obstante, a veces resulta de utilidad referirse a las cantidades dy y dx, de forma que su cociente es la derivada dy/dx. Esto se puede justificar considerando dx como una nueva variable independiente (denominada diferencial de x) y definiendo una nueva variable dependiente dy (denominada diferencial de y), como una función de x y de dx de la siguiente forma:

$$dy = \frac{dy}{dx} \cdot dx = f'(x) \cdot dx$$

Por ejemplo, si $y = x^2$, se puede escribir $dy = 2x \cdot dx$, significando lo mismo que $dy/dx = 2x$. La notación diferencial se utilizará en la interpretación y operación con integrales al comienzo del Capítulo 5.

 Nótese que, tal como han sido definidos, los diferenciales son simplemente variables que pueden ser pequeños en valor absoluto o no serlo. Los diferenciales dy y dx se utilizaron inicialmente por Leibniz y sus sucesores para representar cantidades «infinitesimales» (cantidades infinitamente pequeñas, pero no cero), cuyo cociente dy/dx produce la pendiente de la tangente (una recta secante que pasa por dos puntos infinitamente próximos de la gráfica $y = f(x)$). Se puede demostrar que esas cantidades «infinitesimales» no pueden existir (como números reales). Es posible ampliar el sistema de numeración para que pueda admitir infinitesimales, y utilizarlos para desarrollar el cálculo, pero no seguiremos esta línea.

Las derivadas tienen la propiedad del valor medio

¿Es una función f definida en un intervalo I necesariamente la derivada de otra función definida en I? La respuesta es negativa. Algunas funciones son derivadas y otras no. Aunque una derivada no tiene que ser una función continua (véase el Ejercicio 18 de la Sección 2.6), debe tener la propiedad del valor medio, como una función continua: en un intervalo $[a, b]$, la derivada $f'(x)$ debe tomar todos los valores entre $f'(a)$ y $f'(b)$ (véase el Ejercicio 19 de la Sección 2.6 para una demostración). Una función escalón definida en toda la recta real, como la función de Heaviside $H(x)$ considerada en el Ejemplo 1 de la Sección 1.4 no tiene esta propiedad, por ejemplo, en el intervalo $[-1, 1]$, por lo que no puede ser la derivada de una función en dicho intervalo. Este argumento no es aplicable a la función signo, que es la derivada de la función valor absoluto en cualquier intervalo (véase el Ejemplo 4), incluso aunque no tenga la propiedad del valor medio en un intervalo que contenga al origen. Nótese, sin embargo, que la función signo no está definida en el origen.

Si $g(x)$ es una función continua en un intervalo I, entonces $g(x) = f'(x)$ para alguna función f que sea diferenciable en I. Volveremos sobre este hecho en el Capítulo 5 y lo demostraremos en el Apéndice IV.

Figura 2.17 Esta función no es una derivada en $[-1, 1]$. No tiene la propiedad del valor medio.
Dibuja aproximadamente las gráficas de las derivadas de las funciones de los Ejercicios 1-4.

1. La función f dibujada en la Figura 2.18(a).
2. La función g dibujada en la Figura 2.18(b).
3. La función h dibujada en la Figura 2.18(c).
4. La función k dibujada en la Figura 2.18(d).
5. ¿Dónde es diferenciable la función f de la Figura 2.18(a)?
6. ¿Dónde es diferenciable la función g de la Figura 2.18(b)?

![Figura 2.18](image)

Utilice una herramienta gráfica que permita la diferenciación para dibujar las gráficas de las funciones siguientes y de sus derivadas. Observe las relaciones entre las gráficas de y y de y' en cada caso. ¿Qué características de la gráfica de y se pueden deducir a partir de la gráfica de y'?

7. $y = 3x - x^2 - 1$
8. $y = x^3 - 3x^2 + 2x + 1$
9. $y = |x^3 - x|$
10. $y = |x^2 - 1| - |x^2 - 4|$

En los Ejercicios 11-22, calcule la derivada de las funciones dadas aplicando directamente la definición de derivada.

11. $y = x^2 - 3x$
12. $f(x) = 1 + 4x - 5x^2$
13. $f(x) = x^3$
14. $s = \frac{1}{3 + 4t}$
15. $F(t) = \sqrt{2t + 1}$
16. $f(x) = \frac{3}{4}\sqrt{2 - x}$
17. $y = x + \frac{1}{x}$
18. $z = \frac{s}{1 + s}$
19. $F(x) = \frac{1}{\sqrt{1 + x^2}}$
20. $y = \frac{1}{x^2}$
21. $y = \frac{1}{\sqrt{1 + x}}$
22. $f(t) = \frac{t^2 - 3}{t^2 + 3}$
23. ¿Cómo debería definirse la función $f(x) = x\text{sgn}x$ en $x = 0$ para que sea continua en ese punto? ¿Sería entonces diferenciable en dicho punto?
24. ¿Cómo debería definirse la función $g(x) = x^2 \text{sgn}x$ en $x = 0$ para que sea continua en ese punto? ¿Sería entonces diferenciable en dicho punto?
25. ¿Dónde no es diferenciable la función $h(x) = |x^3 + 3x + 2|$?
26. Utilizando una calculadora, calcule la pendiente de la recta secante a $y = x^2 - 2x$ que pasa por los puntos correspondientes a $x = 1$ y $1 + \Delta x$, para varios valores de Δx de tamaño decreciente, por ejemplo $\Delta x = \pm 0,1$, $\pm 0,01$, $\pm 0,001$ y $\pm 0,0001$ (haga una tabla). Calcule también $\frac{d}{dx}(x^2 - 2x) \bigg|_{x=1}$ utilizando la definición de derivada.
27. Repita el Ejercicio 26 para la función $f(x) = \frac{1}{x}$ y los puntos $x = 2$ y $2 + \Delta x$.

Utilizando la definición de derivada, calcule las ecuaciones de las rectas tangentes a las curvas de los Ejercicios 28-31 en los puntos que se indican.

28. $y = 5 + 4x - x^2$ en el punto donde $x = 2$
29. $y = \sqrt{x + 6}$ en el punto $(3, 3)$
30. $y = \frac{t}{t^2 - 2}$ en el punto donde $t = -2$
31. $y = \frac{2}{t^2 + t}$ en el punto donde $t = a$

Calcule las derivadas de las funciones de los Ejercicios 32-37 utilizando la regla general de la potencia. ¿Dónde es válida cada derivada?

32. $f'(x) = x^{-17}$
33. $g(t) = t^{22}$
34. $y = x^{1/3}$
35. $y = x^{-1/3}$
36. $t^{-2.25}$
37. $s^{11/4}$
En los Ejercicios 38-48 se pueden utilizar las fórmulas de derivadas obtenidas en esta sección.

38. Calcule \(\frac{d}{dx} \sqrt[3]{x} \) si \(F(x) = \frac{1}{x} \).

39. Calcule \(F'(x) \) si \(F(x) = x^{1/3} \).

40. Calcule \(f'(x) \) si \(f(x) = x^{2/3} \).

41. Calcule \(\frac{dy}{dt} \) si \(y = t^{1/4} \).

42. Calcule la ecuación de la recta tangente a la curva \(y = \sqrt{x} \) en \(x = x_0 \).

43. Calcule la ecuación de la recta normal a la curva \(y = 1/x \) en el punto \(x = a \).

44. Demuestre que la curva \(y = x^2 \) y la recta \(x + 4y = 18 \) se cortan formando un ángulo recto en uno de sus dos puntos de intersección. **Sugerencia:** Calcule el producto de sus pendientes en uno de sus dos puntos de intersección.

45. Hay dos rectas distintas que pasan por el punto \((1, -3)\) y son tangentes a la curva \(y = x^2 \). Calcule sus ecuaciones. **Sugerencia:** Dibuje una gráfica. No se dan los puntos de tangencia. Denomínelos \((a, a^2)\).

46. Calcule las ecuaciones de dos rectas que tengan pendiente \(-2\) y sean tangentes a la gráfica de \(y = 1/x \).

47. Calcule la pendiente de una recta que pase por el punto \((-2, 0)\) y sea tangente a la curva \(y = \sqrt{x} \).

48. Demuestre que existen dos tangentes distintas a la curva \(y = x^2 \) que pasan por el punto \((a, b)\) suponiendo que \(b < a^2 \). ¿Cuántas tangentes pasan por el punto \((a, b)\) si \(b = a^2 \)? ¿Y si \(b > a^2 \)?

49. Demuestre que la derivada de una función impar diferenciable es par y que la derivada de una función par diferenciable es impar.

50. Demuestre el caso \(r = -n \) (siendo \(n \) un entero positivo) de la regla general de la potencia. Es decir, demuestre que

\[
\frac{d}{dx} x^{-n} = -nx^{-n-1}
\]

Utilice la fórmula de factorización de una diferencia de potencias \(n \)-ésimas dada en esta sección.

51. Utilice la fórmula de factorización de una diferencia de cubos:

\[
a^3 - b^3 = (a - b)(a^2 + ab + b^2)
\]

como ayuda para calcular la derivada de \(f(x) = x^{1/3} \) utilizando directamente la definición de derivada.

52. Demuestre la Regla General de la Potencia para \(\frac{d}{dx} x^r \) siendo \(r = 1/n \) y \(n \) un entero positivo. **Sugerencia:**

\[
\frac{d}{dx} x^{1/n} = \lim_{h \to 0} \frac{(x + h)^{1/n} - x^{1/n}}{h}
\]

Aplique la fórmula de factorización de una diferencia de potencias \(n \)-ésimas al último cociente.

53. Obtenga una demostración de la regla de la potencia

\[
\frac{d}{dx} x^n = nx^{n-1}
\]

para enteros positivos \(n \) utilizando la fórmula del binomio de Newton:

\[
(x + h)^n = x^n + \binom{n}{1} x^{n-1} h + \frac{n(n-1)}{1 \times 2} x^{n-2} h^2 + \frac{n(n-1)(n-2)}{1 \times 2 \times 3} x^{n-3} h^3 + \ldots + h^n
\]

54. Utilice las derivadas por la izquierda y por la derecha, \(f_+'(a) \) y \(f_-'(a) \) para definir el concepto de una semiregla con origen en \((a, f(a))\) que es tangente por la izquierda o por la derecha a la gráfica de \(f \) en \(x = a \). Demuestre que la gráfica tiene tangente en \(x = a \) si y sólo si tiene tangentes por la izquierda y por la derecha que son dos partes de una misma recta. ¿Cuáles son las tangentes por la izquierda y por la derecha a las gráficas de \(y = x^{1/3} \), \(y = x^{2/3} \) y \(|x|\) en \(x = 0 \)?

2.3 Reglas de diferenciación

Si hubiera que calcular todas las derivadas utilizando la definición, como en los ejemplos de la Sección 2.2, el cálculo sería sin duda una materia penosa. Afortunadamente, hay una forma más fácil. Desarrollaremos varias reglas de diferenciación generales que nos permitirán calcular las derivadas de combinaciones complicadas de funciones de forma más sencilla, sin más que conocer previamente las derivadas de algunas funciones elementales que vimos en la sección anterior. Por ejemplo, vamos a ser capaces de calcular la derivada de \(\frac{x^2}{\sqrt{x^3 + 1}} \) sin más que conocer las
derivadas de x^2 y de \sqrt{x}. Las reglas que desarrollaremos en esta sección nos permitirán diferenciar sumas, productos por una constante, productos y cocientes de funciones cuyas derivadas ya conozcamos. En la Sección 2.4 aprenderemos a diferenciar composiciones de funciones.

Antes de desarrollar las reglas de diferenciación es necesario establecer un teorema obvio pero muy importante que dice, más o menos, que la gráfica de una función no puede romperse en un punto donde dicha función es suave.

TEOREMA 1 Ser diferenciable implica ser continua

Si f es diferenciable en x, entonces es continua en x.

DEMOSTRACIÓN Como f es diferenciable en x, sabemos que existe

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

Utilizando las reglas de los límites (Teorema 2 de la Sección 1.2), tenemos que

$$\lim_{h \to 0} (f(x+h) - f(x)) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right) (h) = (f'(x))(0) = 0$$

Esto es equivalente a $\lim_{h \to 0} f(x+h) = f(x)$, lo que indica que f es continua en x.

Sumas y productos por constantes

La derivada de una suma (o diferencia) de funciones es la suma (o diferencia) de las derivadas de las funciones. La derivada del producto de una función por una constante es la misma constante multiplicada por la derivada de la función.

TEOREMA 2 Reglas de diferenciación de sumas, diferencias y productos por constantes

Si las funciones f y g son diferenciables en x, y C es una constante, entonces las funciones $f + g$, $f - g$ y Cf son diferenciables en x y

$$(f + g)'(x) = f'(x) + g'(x)$$

$$(f - g)'(x) = f'(x) - g'(x)$$

$$(Cf)'(x) = Cf'(x)$$

DEMOSTRACIÓN Las tres demostraciones son directas, utilizando las reglas de límites correspondientes del Teorema 2 de la Sección 1.2. Para la suma, tenemos que

$$(f + g)'(x) = \lim_{h \to 0} \frac{(f + g)(x+h) - (f + g)(x)}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h}$$

$$= \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right)$$

$$= f'(x) + g'(x)$$
dado que el límite de la suma es la suma de los límites. La demostración para la diferencia es similar. Para el caso de la multiplicación por una constante, tenemos que

\[(Cf)'(x) = \lim_{h \to 0} \frac{Cf(x + h) - Cf(x)}{h} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = Cf'(x)\]

La regla de diferenciación de sumas se puede ampliar a cualquier suma de un número finito de términos:

\[(f_1 + f_2 + \cdots + f_n)' = f_1' + f_2' + \cdots + f_n' \quad (\ast)\]

Para ver esto se puede utilizar una técnica denominada inducción matemática (véase la nota que sigue). El Teorema 2 demuestra que el caso de \(n = 2\) es cierto. Éste es el PASO 1. Para el PASO 2 debemos demostrar que si la fórmula \((\ast)\) se cumple para algún entero \(n = k \geq 2\), entonces debe cumplirse también para \(n = k + 1\). Por tanto, supongamos que

\[(f_1 + f_2 + \cdots + f_n)' = f_1' + f_2' + \cdots + f_k'\]

Inducción matemática

La inducción matemática es una técnica para demostrar que una afirmación sobre un entero \(n\) es cierta para todo entero \(n\) mayor o igual que algún entero inicial \(n_0\). La demostración se realiza en dos pasos:

- **PASO 1.** Se demuestra que la afirmación es cierta para \(n = n_0\).
- **PASO 2.** Se demuestra que si la afirmación es cierta para algún entero \(n = k\), siendo \(k \geq n_0\), entonces es también cierta para el siguiente entero superior, \(n = k + 1\).

El paso 2 evita que haya un entero mínimo mayor que \(n_0\) para el que la afirmación sea falsa. Si es cierta para \(n_0\), debe ser cierta también para todos los enteros mayores.

Tenemos entonces que

\[
(f_1 + f_2 + \cdots + f_k + f_{k+1})' = \left((f_1 + f_2 + \cdots + f_k) + f_{k+1}\right)'
\]

Sea \(f\) esta función

\[
= (f + f_{k+1})' \quad \text{(Ahora se usa el caso conocido } n = 2)\]

\[
= f' + f'_{k+1}
\]

\[
= f_1' + f_2' + \cdots + f_k' + f'_{k+1}
\]

Una vez verificados ambos pasos, podemos decir que \((\ast)\) se cumple para \(n \geq 2\) por inducción. Por tanto, se cumple en particular que la derivada de un polinomio es la suma de las derivadas de sus términos.

Ejemplo 1 Calcule las derivadas de las funciones

(a) \(2x^3 - 5x^2 + 4x + 7\), \hspace{1em} (b) \(f(x) = 5\sqrt{x} + \frac{3}{x} - 18\), \hspace{1em} (c) \(y = \frac{1}{7}t^4 - 3t^{7/3}\)

Solución Todas las funciones son sumas de funciones multiplicadas por constante, que ya sabemos cómo diferenciar:
(a) \(\frac{d}{dx} (2x^3 - 5x^2 + 4x + 7) = 2(3x^2) - 5(2x) + 4(1) + 0 = 6x^2 - 10x + 4 \)

(b) \(f'(x) = 5 \left(\frac{1}{2\sqrt{x}} \right) + 3 \left(\frac{1}{x^2} \right) - 0 = \frac{5}{2\sqrt{x}} - \frac{3}{x^2} \)

(c) \(\frac{dy}{dt} = \frac{1}{7} \left(4t^3 \right) - 3 \left(\frac{7}{3} t^{6/3} \right) = \frac{4}{7} t^3 - 7t^{6/3} \)

Ejemplo 2 Calcule la ecuación de la tangente a la curva \(y = \frac{3x^3 - 4}{x} \) en el punto de la curva donde \(x = -2 \).

Solución Si \(x = -2 \), entonces \(y = 14 \). La pendiente de la curva en \((-2, 14)\) es

\[
\left. \frac{dy}{dx} \right|_{x=-2} = \left. \frac{d}{dx} \left(3x^2 - \frac{4}{x} \right) \right|_{x=-2} = \left. \left(6x + \frac{4}{x^2} \right) \right|_{x=-2} = -11
\]

La ecuación de la tangente es entonces \(y = 14 - 11(x + 2) \), o \(y = -11x - 8 \).

Regla del Producto

La regla para diferenciar un producto de funciones es un poco más complicada que la de las sumas. No es verdad que la derivada de un producto sea el producto de las derivadas.

TEOREMA 3 Regla del Producto

Si las funciones \(f \) y \(g \) son diferenciables en \(x \), entonces el producto \(fg \) también diferenciable en \(x \)

\[
(fg)'(x) = f'(x)g(x) + f(x)g'(x)
\]

DEMONSTRAción Escribiremos el cociente de Newton de \(fg \) y sumaremos 0 al numerador de forma que nos permitirá considerar separadamente los cocientes de Newton de \(f \\ y g \\)

\[
(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}
= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}
= \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} g(x+h) + f(x) \left(\frac{g(x+h) - g(x)}{h} \right) \right)
= f'(x)g(x) + f(x)g'(x)
\]

Para obtener el resultado final hemos utilizado el hecho de que \(f \) y \(g \) son diferenciables y de que, por tanto, \(g \) es continua (Teorema 1), así como las reglas de límites del Teorema 2 de la Sección 1.2. La Figura 2.19 es una demostración gráfica de la regla del producto.
Demostración gráfica de la regla del producto

Tenemos que \(u = f(x) \) y \(v = g(x) \), de forma que el área rectangular \(uv \) representa a \(f(x)g(x) \). Si \(x \) cambia una cantidad \(\Delta x \), los incrementos correspondientes de \(u \) y \(v \) son \(\Delta u \) y \(\Delta v \). El cambio en el área del rectángulo es

\[
\Delta(uv) = (u + \Delta u)(v + \Delta v) - uv
\]

\[=
(\Delta u)v + u(\Delta v) + (\Delta u)(\Delta v)
\]

que es la suma de las tres áreas sombreadas. Dividiendo por \(\Delta x \) y tomando el límite cuando \(\Delta x \to 0 \) obtenemos

\[
\frac{d}{dx} (uv) = \left(\frac{du}{dx} \right) v + u \left(\frac{dv}{dx} \right)
\]

ya que

\[
\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} \Delta v = \frac{du}{dx} \times 0 = 0
\]

Ejemplo 3 Calcule la derivada de \((x^2 + 1)(x^3 + 4)\), utilizando y sin utilizar la regla del producto.

Solución Usando la regla del producto, \(f(x) = x^2 + 1 \) y \(g(x) = x^3 + 4 \), con lo que se calcula

\[
\frac{d}{dx} ((x^2 + 1)(x^3 + 4)) = 2x(x^3 + 4) + (x^2 + 1)(3x^2) = 5x^4 + 3x^2 + 8x
\]

Por otra parte, se puede calcular también la derivada multiplicando los dos binomios y diferenciando el polinomio resultante:

\[
\frac{d}{dx} ((x^2 + 1)(x^3 + 4)) = \frac{d}{dx} (x^5 + x^3 + 4x^2 + 4) = 5x^4 + 3x^2 + 8x
\]

Ejemplo 4 Calcule \(\frac{dy}{dx} \) si \(y = \left(2\sqrt{x} + \frac{3}{x} \right) \left(3\sqrt{x} - \frac{2}{x} \right) \)

Solución Usando la regla del producto, siendo \(f \) y \(g \) las funciones encerradas entre paréntesis, se obtiene

\[
\frac{dy}{dx} = \left(\frac{1}{\sqrt{x}} - \frac{3}{x^2} \right) \left(3\sqrt{x} - \frac{2}{x} \right) + \left(2\sqrt{x} + \frac{3}{x} \right) \left(\frac{3}{2\sqrt{x}} + \frac{2}{x^2} \right)
\]

\[=
6 - \frac{5}{2\sqrt{x}} + \frac{12}{x^3}
\]
Ejemplo 5 Sea \(y = uv \) el producto de dos funciones \(u \) y \(v \). Calcule \(y'(2) \) si \(u(2) = 2 \), \(u'(2) = -5 \), \(v(2) = 1 \) y \(v'(2) = 3 \).

Solución Usando la regla del producto, tenemos que

\[
y' = (uv)' = u'v + uv'
\]

Por tanto,

\[
y'(2) = u'(2)v(2) + u(2)v'(2) = (-5)(1) + (2)(3) = -5 + 6 = 1
\]

Ejemplo 6 Utilice inducción matemática para verificar la fórmula \(\frac{d}{dx} x^n = nx^{n-1} \) para todos los enteros positivos \(n \).

Solución Para \(n = 1 \), la fórmula dice que \(\frac{d}{dx} x^1 = 1x^0 \), por lo que en este caso la fórmula es verdadera. Debemos demostrar ahora que si la fórmula es verdadera para \(n = k \geq 1 \), es también verdadera para \(n = k + 1 \). Por tanto, supongamos que

\[
\frac{d}{dx} x^k = kx^{k-1}
\]

Utilizando la regla del producto, se calcula

\[
\frac{d}{dx} x^{k+1} = \frac{d}{dx} (x^k x) = (kx^{k-1})(1) + (x^k)(1) = (k + 1)x^k = (k + 1)x^{(k+1)-1}
\]

Entonces, la fórmula es verdadera también para \(n = k + 1 \). La fórmula es verdadera para todos los enteros \(n \geq 1 \) por inducción.

La regla del producto se puede extender a productos de cualquier número de factores. Por ejemplo:

\[
(fgh)'(x) = f'(x)(gh)(x) + f(x)(gh)'(x)
\]

\[
= f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)
\]

En general, la derivada de un producto de \(n \) funciones tendrá \(n \) términos. Cada término será el mismo producto, pero con uno de sus factores sustituido por su derivada:

\[
(f_1 f_2 f_3 \cdots f_n)' = f_1 f_2 f_3 \cdots f_n + f_1 f_2 f_3 \cdots f_n + \cdots + f_1 f_2 f_3 \cdots f_n
\]

 Esto se puede demostrar mediante inducción matemática. Véase el Ejercicio 54 al final de esta sección.

Regla de la Inversa

TEOREMA 4 Regla de la Inversa

Si \(f \) es diferenciable en \(x \) y \(f(x) \neq 0 \), entonces \(1/f \) es diferenciable en \(x \) y

\[
\left(\frac{1}{f} \right)'(x) = \frac{-f'(x)}{(f(x))^2}
\]
DEMOSTRACIÓN Utilizando la definición de derivada, se calcula

\[
\frac{d}{dx} \frac{1}{f(x)} = \lim_{h \to 0} \frac{1}{f(x + h)} - \frac{1}{f(x)} \left/ \frac{h}{h} \right.
\]

\[
= \lim_{h \to 0} \frac{f(x) - f(x + h)}{h f(x + h) f(x)}
\]

\[
= \lim_{h \to 0} \frac{-1}{(f(x + h) f(x))} \frac{f(x + h) - f(x)}{h}
\]

\[
= -\frac{1}{(f(x))^2} f'(x)
\]

Para obtener el resultado hemos utilizado la continuidad de \(f \) (Teorema 1), así como las reglas de límites de la Sección 1.2.

Ejemplo 7 Diferencie las funciones

(a) \(\frac{1}{x^2 + 1} \) \quad (b) \(f(t) = \frac{1}{t + \frac{1}{t}} \)

Solución Utilizando la Regla de la Inversa:

(a) \(\frac{d}{dx} \left(\frac{1}{x^2 + 1} \right) = \frac{-2x}{(x^2 + 1)^2} \)

(b) \(f'(t) = \frac{-1}{\left(1 + \frac{1}{t^2}\right)} \left(1 - \frac{1}{t^2}\right) = \frac{-t^2 - t^2 - 1}{(t^2 + 1)^2} = \frac{1 - t^2}{(t^2 + 1)^2} \)

La Regla de la Inversa se puede utilizar para confirmar la regla general de la potencia para enteros negativos:

\[
\frac{d}{dx} x^{-n} = -nx^{-n-1}
\]

que ya hemos demostrado para enteros positivos. Tenemos que

\[
\frac{d}{dx} x^{-n} = \frac{d}{dx} \frac{1}{x^n} = -nx^{-n-1} = -nx^{-n-1}
\]

Ejemplo 8 (Diferenciación de sumas de inversos)

\[
\frac{d}{dx} \left(\frac{x^2 + x + 1}{x^3} \right) = \frac{d}{dx} \left(\frac{1}{x^2 + x + 1} \right)
\]

\[
= \frac{d}{dx} \left(x^{-1} + x^{-2} + x^{-3} \right)
\]

\[
= -x^{-2} - 2x^{-3} - 3x^{-4} = -\frac{1}{x^2} - \frac{2}{x^3} - \frac{3}{x^4}
\]
Regla del Cociente

La Regla del Producto y la Regla de la Inversa se pueden combinar para obtener una regla de diferenciación del cociente de dos funciones. Obsérvese que

\[
\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{d}{dx} \left(f(x) \frac{1}{g(x)} \right) = f'(x) \frac{1}{g(x)} + f(x) \left(- \frac{g'(x)}{(g(x))^2} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}
\]

Por tanto, hemos demostrado la siguiente regla del cociente.

TEOREMA 5 Regla del Cociente

Si \(f \) y \(g \) son diferenciables en \(x \) y \(g(x) \neq 0 \), entonces el cociente \(f/g \) es diferenciable en \(x \) y

\[
\left(\frac{f}{g} \right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}
\]

Algunas veces los estudiantes tienen problemas para recordar esta regla. Si los términos del numerador invierten su orden el signo final cambiará. Es importante recordar (y utilizar) la regla del cociente de la siguiente forma:

\[
(cociente)' = \frac{(denominador) \times (numerador)' - (numerador) \times (denominador)'}{(denominador)^2}
\]

Ejemplo 9 Calcule las derivadas de

(a) \(y = \frac{1 - x^2}{1 + x^2} \)
(b) \(y = \frac{\sqrt{t}}{3 - 5t} \)
(c) \(f(\theta) = \frac{a + b\theta}{m + n\theta} \)

Solución En todos los casos se emplea la Regla del Cociente.

(a) \(\frac{dy}{dx} = \frac{(1 + x^2)(-2x) - (1 - x^2)(2x)}{(1 + x^2)^2} = \frac{-4x}{(1 + x^2)^2} \)

(b) \(\frac{d}{dt} \left(\frac{\sqrt{t}}{3 - 5t} \right) = \frac{(3 - 5t) \frac{1}{2\sqrt{t}} - \sqrt{t}(-5)}{(3 - 5t)^2} = \frac{3 + 5t}{2\sqrt{t}(3 - 5t)^2} \)

(c) \(f'(\theta) = \frac{(m + n\theta)(b) - (a + b\theta)(a)}{(m + n\theta)^2} = \frac{mb - na}{(m + n\theta)^2} \)

En los tres casos del Ejemplo 9 la Regla del Cociente produce fracciones con numeradores que son complicados, pero que se pueden simplificar de manera algebraica. Es recomendable intentar realizar este tipo de simplificaciones al calcular derivadas, ya que la utilidad de las derivadas en aplicaciones de cálculo depende muchas veces de esas simplificaciones.
Ejemplo 10 Calcule las ecuaciones de las rectas que pasan por el punto \((-1, 0)\) y son tangentes a la curva \(y = \frac{x-1}{(x+1)^2}\).

Solución El punto \((-1, 0)\) no está en la curva, por lo que no es el punto de tangencia. Supongamos que una recta es tangente a la curva en \(x = a\); entonces el punto de tangencia es \((a, (a-1)/(a+1))\). Nótese que \(a\) no puede ser \(-1\). La pendiente de la recta debe ser

\[
\frac{dy}{dx}_{x=a} = \left. \frac{(x+1) - (x-1)(1)}{(x+1)^2} \right|_{x=a} = \frac{2}{(a+1)^2}
\]

Si la recta pasa además por \((-1, 0)\), su pendiente debe ser

\[
\frac{a - 1}{a + 1} = 0 \quad \Rightarrow \quad a = -1
\]

Igualando las dos expresiones de la pendiente, se obtiene una ecuación de la que se puede despejar \(a\):

\[
\frac{a - 1}{(a+1)^2} = \frac{2}{(a+1)^2} \quad \Rightarrow \quad a - 1 = 2
\]

Por tanto \(a = 3\), y la pendiente de la recta es \(2/(a+1)^2 = 1/8\). Sólo hay una recta que pasa por el punto \((-1, 0)\) y es tangente a la curva, y su ecuación es

\[
y = 0 + \frac{1}{8} (x+1) \quad o \quad x - 8y + 1 = 0
\]

Observación Las derivadas de cocientes de funciones en las que el denominador es un monomio, como el caso del Ejemplo 8, se pueden resolver en general más fácilmente separando el cociente en varias fracciones (como hicimos en ese ejemplo), en vez de utilizar la Regla del Cociente.

Ejercicios 2.3

En los Ejercicios 1-32, calcule las derivadas de las funciones dadas. Simplifique sus respuestas siempre que sea posible.

1. \(y = 3x^2 - 5x - 7\)
2. \(y = 4x^{1/2} - \frac{5}{x}\)
3. \(f(x) = 4x^2 + Bx + C\)
4. \(f(x) = \frac{6}{x^3} + \frac{2}{x^2} - 2\)
5. \(z = \frac{s^5 - s^2}{15}\)
6. \(x = x^{45} - x^{-45}\)
7. \(g(t) = t^{1/3} + 2t^{1/4} + 3t^{1/5}\)
8. \(y = 3\sqrt{2} - \frac{2}{\sqrt{3}}\)
9. \(u = \frac{3}{5} x^{5/3} - \frac{5}{3} x^{-3/5}\)
10. \(F(x) = (3x - 2)(1 - 5x)\)
11. \(y = \sqrt{3} \left(5 - x - \frac{x^2}{3} \right)\)
12. \(g(t) = \frac{1}{2t - 3}\)
13. \(y = \frac{1}{x^2 + 5x}\)
14. \(y = \frac{4}{3 - 3}\)
15. \(f(t) = \frac{\pi}{2 - \pi t}\)
16. \(g(y) = \frac{2}{1 - y^2}\)
17. \(f(x) = \frac{1 - 4x^2}{x^3}\)
18. \(g(u) = \frac{u\sqrt{u} - 3}{u^2}\)
19. \(y = \frac{2 + t + \sqrt{t}}{\sqrt{t}}\)
20. \(z = \frac{x - 1}{x^{2/3}}\)
21. \(f(x) = \frac{3 - 4x}{3 + 4x}\)
22. \(z = \frac{t^2 + 2t}{t^2 - 1}\)
23. \(y = \frac{1 + \sqrt{t}}{1 - \sqrt{t}}\)
24. \(f(x) = \frac{x^2 - 4}{x + 1}\)
25. \(f(x) = \frac{ax + b}{cx + d}\)
26. \(F(t) = \frac{t^2 + 7t - 8}{t^2 - t + 1}\)
27. \(f(1) = (1 + x)(1 + 2x)(1 + 3x)(1 + 4x)\)
29. \(f(r) = (r^{-2} + r^{-3} - 4)(r^2 + r^3 + 1) \)
30. \(y = \frac{(x^2 + 1)(2x^2 + 2)}{(x^2 + 2)(2x^2 + 1)} \)
31. \(y = \frac{x}{2x + \frac{1}{3x + 1}} \)
32. \(f(x) = \frac{\sqrt{x - 1}(2 - x)(1 - x^2)}{\sqrt{x}(3 + 2x)} \)

Calcule las derivadas en los Ejercicios 33-36, sabiendo que \(f(2) = 2 \) y \(f'(2) = 3 \).
33. \(\frac{d}{dx} \left(\frac{x^3}{f(x)} \right) \bigg|_{x=2} \)
34. \(\frac{d}{dx} \left(\frac{x^2}{f(x)} \right) \bigg|_{x=2} \)
35. \(\frac{d}{dx} \left(\frac{f(x)}{x^2 + f(x)} \right) \bigg|_{x=2} \)
36. \(\frac{d}{dt} \left(\frac{1}{5-t} \right) \bigg|_{t=4} \)
37. Calcule \(\frac{d}{dx} \left(\frac{x^2 - 4}{x^2 + 4} \right) \bigg|_{x=-2} \)
38. Calcule \(\frac{d}{dt} \left(3 - 4/\sqrt{t} \right) \bigg|_{t=4} \)
39. Si \(f(x) = \sqrt{x} \), calcule \(f'(2) \).
40. Calcule \(\frac{d}{dt} \left((1 + \delta)(1 + 2\delta)(1 + 3\delta)(1 + 4\delta) \right) \bigg|_{\delta=0} \)
41. Calcule la ecuación de la recta tangente a \(y = \frac{x}{3 - 4\sqrt{x}} \) en el punto \((1, -2)\).
42. Calcule la ecuación de la tangente y la normal a \(y = \frac{x + 1}{x - 1} \) en \(x = 2 \).
43. Calcule los puntos de la curva \(y = x + 1/x \) donde la recta tangente es horizontal.
44. Calcule las ecuaciones de todas las rectas horizontales que son tangentes a la curva \(y = x^2(4 - x^2) \).

45. Calcule las coordenadas de los puntos donde la curva \(y = \frac{1}{x^2 + x + 1} \) tiene una tangente horizontal.
46. Calcule las coordenadas de los puntos de la curva \(y = \frac{1}{x^2 + x + 2} \) donde la tangente es paralela a la recta \(y = 4x \).
47. Calcule la ecuación de la recta que pasa por el punto \((0, b)\) y es tangente a la curva \(y = 1/x \). Suponga que \(b \neq 0 \).
48. Demuestre que la curva \(y = x^2 \) corta a la curva \(y = 1/\sqrt{x} \) formando ángulos rectos.
49. Obtenga dos rectas que sean tangentes a \(y = x^3 \) y pasen por el punto \((2, 8)\).
50. Obtenga dos rectas que sean tangentes a \(y = x^3/(x - 1) \) y pasen por el punto \((2, 0)\).
51. (Regla de la Raíz Cuadrada) Demuestre que si \(f \) es diferenciable en \(x \) y \(f(x) > 0 \), entonces
\[
\frac{d}{dx} \sqrt{f(x)} = \frac{f'(x)}{2\sqrt{f(x)}}
\]
Utilice la Regla de la Raíz Cuadrada para calcular la derivada de \(\sqrt{x^2 + 1} \).
52. Demuestre que \(f(x) = |x^2| \) es diferenciable en todo número real \(x \), y calcule su derivada.

Inducción matemática

53. Utilice Inducción matemática para demostrar que
\[
\frac{d}{dx} x^{n^2} = n \frac{x^{n^2-1}}{2}
\]
para todo entero positivo \(n \). Utilice a continuación la Regla de la Inversa para obtener el mismo resultado para enteros \(n \) negativos.
54. Utilice Inducción matemática para demostrar la fórmula de la derivada de un producto de \(n \) funciones, que se presentó anteriormente en esta sección.

2.4 Regla de la Cadena

Aunque ya sabemos diferenciar \(\sqrt{x} \) y \(x^2 + 1 \), todavía no sabemos diferenciar \(\sqrt{x^2 + 1} \). Para ello es necesaria una regla que nos diga cómo diferenciar composiciones de funciones cuya derivada ya conocemos. Esta regla se conoce con el nombre de Regla de la Cadena y es la regla de diferencia- rencia que se utiliza más a menudo.

Ejemplo 1 La función \(\frac{1}{x^2 - 1} \) es la composición \(f(g(x)) \) de \(f(u) = \frac{1}{u} \) y \(g(x) = x^2 - 4 \), cuyas derivadas son:
\[
f'(u) = -\frac{1}{u^2} \quad y \quad g'(x) = 2x
\]
De acuerdo con la Regla de la Inversa (que es un caso especial de la Regla de la Cadena),

\[
\frac{d}{dx} f(g(x)) = \frac{d}{dx} \left(\frac{1}{x^2 - 4} \right) = \frac{-2x}{(x^2 - 4)^2} = -\frac{1}{(x^2 - 4)^2} (2x)
\]

\[= f'(g(x))g'(x) \]

Este ejemplo sugiere que la derivada de una función compuesta \(f(g(x)) \) es la derivada de \(f \) evaluada en \(g(x) \) multiplicada por la derivada de \(g \) evaluada en \(x \). Esto es la Regla de la Cadena:

\[
\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)
\]

TEOREMA 6 Regla de la Cadena

Si \(f(u) \) es diferenciable en \(u = g(x) \) y \(g(x) \) es diferenciable en \(x \), entonces la función compuesta \(f \circ g(x) = f(g(x)) \) es diferenciable en \(x \) y

\[(f \circ g)(x) = f'(g(x))g'(x)\]

En forma de la notación de Leibniz, si \(y = f(u) \), siendo \(u = g(x) \), entonces \(y = f(g(x)) \) y:

- en \(u \), \(y \) cambia con tasa \(\frac{dy}{du} \) veces el cambio de \(u \).
- en \(x \), \(u \) cambia con tasa \(\frac{du}{dx} \) veces el cambio de \(x \).

Por tanto, en \(x \), \(y = f(u) = f(g(x)) \) cambia con tasa \(\frac{dy}{du} \times \frac{du}{dx} \) veces el cambio en \(x \). Es decir:

\[
\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}
\]

donde \(\frac{dy}{du} \) se evalúa en \(u = g(x) \).

Aunque parece que el símbolo \(du \) se cancelaría en el numerador y el denominador, esto no tiene sentido, ya que \(dy/du \) no se define como el cociente de dos cantidades, sino como una única cantidad; la derivada de \(y \) con respecto a \(u \).

Podríamos intentar demostrar el Teorema 6 escribiendo

\[
\frac{\Delta y}{\Delta x} = \frac{\Delta y \Delta u}{\Delta u \Delta x}
\]

y tomando límites cuando \(\Delta x \to 0 \). Esa demostración sería válida para la mayoría de las funciones compuestas, pero no para todas (véase el Ejercicio 46 al final de esta sección). Más adelante en esta sección se proporcionará una demostración correcta, pero es mejor presentar previamente unos ejemplos para tener una idea más clara de cómo funciona la Regla de la Cadena.

Ejemplo 2 Calcule la derivada de \(y = \sqrt{x^2 + 1} \).

Solución Tenemos que \(y = f(g(x)) \), siendo \(f(u) = \sqrt{u} \) y \(g(x) = x^2 + 1 \). Como las derivadas de \(f \) y \(g \) son

\[
f'(u) = \frac{1}{2\sqrt{u}} \quad y \quad g'(x) = 2x
\]
La Regla de la Cadena indica que
\[
\frac{dy}{dx} = \frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)
\]
\[
= \frac{1}{2\sqrt{g(x)}} \cdot g'(x) = \frac{1}{2\sqrt{x^2 + 1}} \cdot (2x) = \frac{x}{\sqrt{x^2 + 1}}
\]

Generalmente, al aplicar la Regla de la Cadena, no se introducen símbolos para representar las funciones que se componen, sino que se procede a calcular la derivada de la función «externa» y a multiplicarla por la derivada de la función «interna». Podemos decir entonces: «la derivada de \(f\) de algo es \(f'\) de ese algo, multiplicada por la derivada de ese algo».

Funciones internas y externas

En la función compuesta \(f(g(x))\), la función \(f\) es «externa» y la función \(g\) es «interna». La Regla de la Cadena dice que la derivada de la función compuesta es la derivada \(f'\) de la función externa evaluada en la función interna \(g(x)\) multiplicada por la derivada \(g'(x)\) de la función interna:

\[
\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)
\]

Ejemplo 3 Calcule las derivadas de las siguientes funciones:

(a) \((7x - 3)^{10}\),
(b) \(f(t) = |t^2 - 1|\),
y (c) \(3x + \frac{1}{(2x + 1)^3}\)^{1/4}

Solución

(a) Aquí, la función externa es la décima potencia. Debe diferenciarse primero y el resultado multiplicarse por la derivada de la expresión \(7x - 3\):

\[
\frac{d}{dx} (7x - 3)^{10} = 10(7x - 3)^9(7) = 70(7x - 3)^9
\]

(b) En este caso estamos diferenciando el valor absoluto de algo. La derivada es la función signo de ese algo, multiplicada por la derivada de ese algo:

\[f'(t) = (\text{sgn}(t^2 - 1))(2t) = \begin{cases} 2t & \text{si } t < -1 \text{ o } t > 1 \\
-2t & \text{si } -1 < t < 1 \\
\text{Indefinida} & \text{si } t = \pm 1
\end{cases}\]

(c) Aquí es necesario usar dos veces la Regla de la Cadena. Se comienza por diferenciar la potencia 1/4 de algo, pero ese algo contiene la potencia -3 de \(2x + 1\), y para derivar eso será necesaria de nuevo la Regla de la Cadena:

\[
\frac{d}{dx} \left(3x + \frac{1}{(2x + 1)^3}\right)^{1/4} = \frac{1}{4} \left(3x + \frac{1}{(2x + 1)^3}\right)^{-3/4} \frac{d}{dx} \left(3x + \frac{1}{(2x + 1)^3}\right)
\]
\[
= \frac{1}{4} \left(3x + \frac{1}{(2x + 1)^3}\right)^{-3/4} \left(3 - \frac{3}{(2x + 1)^4} \frac{d}{dx} (2x + 1)\right)
\]
\[
= \frac{3}{4} \left(3x + \frac{1}{(2x + 1)^3}\right)^{-3/4} \left(1 - \frac{2}{(2x + 1)^4}\right)
\]
CAPÍTULO 2. Diferenciación 141

Cuando ya estemos familiarizados con la Regla de la Cadena, podremos ahorrar pasos realizando toda la operación en un solo paso:

\[
\frac{d}{dx} \left(3x + \frac{1}{(2x + 1)^3}\right)^{1/4} = \frac{1}{4} \left(3x + \frac{1}{(2x + 1)^3}\right)^{-3/4} \left(3 - \frac{3}{(2x + 1)^2}\right) \\
= \frac{3}{4} \left(1 - \frac{2}{(2x + 1)^2}\right) \left(3x + \frac{1}{(2x + 1)^3}\right)^{-3/4}
\]

El uso de la Regla de la Cadena produce productos de factores que no aparecen en el orden en el que se escriben de forma natural, por lo que muchas veces se modificará el resultado para escribir los factores en un orden diferente. Esto es obvio en los apartados (a) y (c) del ejemplo anterior. En monomios (expresiones que son producto de factores), es habitual escribir los factores en orden de complejidad decreciente de izquierda a derecha, colocando primero los factores numéricos. Hay ocasiones en las que no merece la pena gastar tiempo realizando estas operaciones. Una de ellas es cuando deseamos particularizar la derivada en un valor concreto. En este caso, se sustituye el valor tan pronto como se pueda tras calcular la derivada, antes de realizar modificaciones de orden o simplificaciones:

\[
\frac{d}{dx} (x^2 - 3)^4 \bigg|_{x=2} = 10(x^2 - 3)^3(2x) \bigg|_{x=2} = (10)(1^5)(4) = 40
\]

Ejemplo 4 Supongamos que \(f \) es una función diferenciable en la recta real. Expresémonos en función de \(f \), o \(f' \), las derivadas de:

(a) \(f(3x) \), \(b) \ f(x^2) \), \(c \ f(\pi f(x)) \), \(y \) (d) \ (f(3 - 2f(x)))^4 \).

Solución

(a) \(\frac{d}{dx} f(3x) = f'(3x) \cdot 3 \cdot f'(3x) \).

(b) \(\frac{d}{dx} f(x^2) = f'(x^2) \cdot 2x \cdot f'(x^2) \).

(c) \(\frac{d}{dx} f(\pi f(x)) = \frac{d}{dx} (\pi f(x)) \cdot f'(\pi f(x)) = \pi f'(x) f'(\pi f(x)) \).

(d) \(\frac{d}{dx} [f(3 - 2f(x))]^4 = 4[f(3 - 2f(x))]^3 f'(3 - 2f(x)) \cdot (-2f'(x)) \)

\[
= -8f'(x)f'(3 - 2f(x))[f(3 - 2f(x))]^3
\]

Cálculo de derivadas con Maple

Los sistemas de álgebra por ordenador conocen las derivadas de funciones elementales y pueden calcular simbólicamente las derivadas de combinaciones de esas funciones, utilizando las reglas de diferenciación. El operador \(D \) de Maple se utiliza para calcular la derivada \(D(f) \) de una función \(f \) de una variable. Alternativamente, se puede utilizar \(\text{diff} \) para diferenciar una expresión con respecto a una variable y emplear después la rutina de sustitución \(\text{subs} \) para particularizar el resultado en un número concreto.

> \(f := x \rightarrow \sqrt{1+2x^2} ; \)

\(f := x \rightarrow \sqrt{1+2x^2} \)
> fprime := D(f);

\[fprime := x \to 2 \frac{x}{\sqrt{1 + 2x^2}} \]

> fprime(2);

\[
\begin{align*}
4 \\
3
\end{align*}
\]

> diff(t^3*2*sin(3*t), t);

\[
2t \cdot \sen(3t) + 3t^2 \cdot \cos(3t)
\]

> simplify(subs(t = Pi/12, %));

\[
\frac{1}{12} \pi \sqrt{2} + \frac{1}{96} \pi^2 \sqrt{2}
\]

Uso de la Regla de la Cadena en las fórmulas de diferenciación

Sea \(u \) una función diferenciable en \(x \) y \(y = u^n \). La aplicación de la Regla de la Cadena produce

\[
\frac{dy}{dx} = \frac{du}{dx} \cdot \frac{dy}{du}
\]

La fórmula

\[
\frac{d}{dx} u^n = nu^{n-1} \frac{du}{dx}
\]

es simplemente la fórmula \(\frac{d}{dx} x^n = nx^{n-1} \) donde se ha incluido la aplicación de la Regla de la Cadena para que se pueda emplear con funciones de \(x \) en vez de sólo con \(x \). Algunas otras reglas de diferenciación donde se puede aplicar la Regla de la Cadena son:

\[
\begin{align*}
\frac{d}{dx} \left(\frac{1}{u} \right) &= -\frac{1}{u^2} \frac{du}{dx} & \text{(Regla de la Inversa)} \\
\frac{d}{dx} \sqrt{u} &= \frac{1}{2\sqrt{u}} \frac{du}{dx} & \text{(Regla de la Raíz Cuadrada)} \\
\frac{d}{dx} u^r &= ru^{r-1} \frac{du}{dx} & \text{(Regla General de la Potencia)} \\
\frac{d}{dx} |u| &= \sign(u) \frac{du}{dx} = \frac{u}{|u|} \frac{du}{dx} & \text{(Regla del Valor Absoluto)}
\end{align*}
\]

Demostración de la Regla de la Cadena (Teorema 6)

Sea \(f \) una función diferenciable en el punto \(u = g(x) \), con \(g \) una función diferenciable en \(x \). Sea la función \(E(k) \) definida así:

\[
E(0) = 0
\]

\[
E(k) = \frac{f(u + k) - f(u)}{k} - f'(u), \quad \text{si} \ k \neq 0
\]
Por definición de derivada, \(\lim_{k \to 0} E(k) = f'(u) - f'(u) = 0 = E(0) \), por lo que \(E(k) \) es continua en \(k = 0 \). Ademá, sea \(k = 0 \) o no, tenemos que
\[
f(u + k) - f(u) = (f(u) + E(k))k
\]

Sea ahora \(u = g(x) \) y \(k = g(x + h) - g(x) \), de forma que \(u + k = g(x + h) \), con lo que se obtiene
\[
f(g(x + h)) - f(g(x)) = (f'(g(x)) + E(k))(g(x + h) - g(x))
\]

Como \(g \) es diferenciable en \(x \), \(\lim_{h \to 0} \frac{[g(x + h) - g(x)]}{h} = g'(x) \). Además, \(g \) es continua en \(x \) por el Teorema 1, por lo que \(\lim_{h \to 0} k = \lim_{h \to 0} (g(x + h) - g(x)) = 0 \). Como \(E \) es continua en 0, \(\lim_{h \to 0} E(k) = \lim_{h \to 0} E(k) = E(0) = 0 \). Por tanto,
\[
\frac{d}{dx} f(g(x)) = \lim_{h \to 0} \frac{f(g(x + h)) - f(g(x))}{h}
\]
\[
= \lim_{h \to 0} \left(f'(g(x)) + E(k) \right) \frac{g(x + h) - g(x)}{h}
\]
\[
= (f'(g(x)) + 0)g'(x) = f'(g(x))g'(x)
\]
como se quería demostrar.

Ejercicios 2.4

Calcule las derivadas de las funciones de los Ejercicios 1-16.

1. \(y = (2x + 3)^6 \)
2. \(y = \left(\frac{1}{x - 3} \right)^{3/2} \)
3. \(f(x) = (4 - x^2)^{10} \)
4. \(y = \sqrt{1 - 3x^2} \)
5. \(F(t) = \left(2 + \frac{3}{t} \right)^{-10} \)
6. \((1 + x^{2/3})^{3/2} \)
7. \(\frac{3}{5 - 4x} \)
8. \((1 - 2x)^{-3/2} \)
9. \(y = |1 - x^2| \)
10. \(f(t) = |2 + t^2| \)
11. \(y = 4x + |4x - 1| \)
12. \(y = (2 + |x|^3)^{1/3} \)
13. \(y = \frac{1}{2 + \sqrt{3x + 4}} \)
14. \(f(x) = \left(1 + \sqrt{\frac{x - 2}{3}} \right)^4 \)
15. \(z = \left(u + \frac{1}{u - 1} \right)^{-5/3} \)
16. \(y = \frac{x^3\sqrt{3 + x^8}}{(4 + x^3)^{1/2}} \)
17. Dibuje la gráfica de la función del Ejercicio 10.
18. Dibuje la gráfica de la función del Ejercicio 11.
20. \(x^{3/4} = \sqrt[4]{x^3} \)
21. \(x^{3/2} = \sqrt[2]{x^3} \)

En los Ejercicios 22-29, exprese las derivadas de las funciones dadas en función de la derivada \(f' \) de la función diferenciable \(f \).

22. \(f(2t + 3) \)
23. \(f(5x - 2x) \)
24. \(\left[f(x) \right]^{3/2} \)
25. \(\sqrt{3 + 2f(x)} \)
26. \(f(\sqrt{3 + 2t}) \)
27. \(f(3 + 2\sqrt{x}) \)
28. \(f(2f(3f(x))) \)
29. \(f(2 - 3f(4 - 5t)) \)
30. Calcule \(\frac{d}{dx} \left(\frac{\sqrt{x^2 - 1}}{x + 1} \right) \) en \(x = -2 \).
31. Calcule \(\frac{d}{dx} \left(\frac{3t^2}{3t^2 - 1} \right) \) en \(t = 3 \).
32. Si \(f(x) = \frac{1}{\sqrt{2x + 1}} \), calcule \(f'(4) \).
33. Si \(y = (x^3 + 9)^{1/2} \), calcule \(y' \) en \(x = -2 \).
34. Calcule \(F'(0) \) si \(F(x) = (1 + x)(2 + x)(3 + x)^2(4 + x)^4 \).
35. Calcule \(y' \) si \(y = (x + ((3x)^5 - 2)^{-1/2})^{-6} \). Intente hacer todo en un paso.
En los Ejercicios 33-39, calcule la ecuación de la recta tangente a cada curva en el punto dado.

36. \(y = \sqrt{1 + 2x^2} \) en \(x = 2 \)

37. \(y = \frac{1}{x^2 + \frac{1}{x^2}} \) en \(x = -1 \)

38. \(y = (ax + b)^n \) en \(x = b/a \)

39. \(y = 1/(x^2 - x + 3)^{3/2} \) a \(x = -2 \)

40. Demuestre que la derivada de \(f(x) = (x - a)^m(x - b)^n \) se anula en algún punto entre \(a \) y \(b \) si \(m \) y \(n \) son enteros positivos.

Utilice Maple u otro sistema de álgebra por computador para calcular y simplificar las derivadas de las funciones de los Ejercicios 41-44.

41. \(y = \sqrt{x^2 + 1} + \frac{1}{(x^2 + 1)^{3/2}} \)

42. \(y = \frac{(x^2 - 1)(x^2 - 4)(x^2 - 9)}{x^6} \)

43. \(\frac{dy}{dx} \) si \(y = (t + 1)(t^2 + 2)(t^3 + 3)(t^4 + 4)(t^5 + 5) \)

44. \(f'(1) \) si \(f(x) = \frac{(x^2 + 3)^{1/2}(x^2 + 7)^{1/3}}{(x^2 + 15)^{1/4}} \)

45. ¿Permite la Regla de la Cadena calcular las derivadas de \(|x|^4 \) y \(|x|^8 \) en \(x = 0 \)? ¿Tienen derivada esas funciones en \(x = 0 \)? ¿Por qué?

*46. ¿Qué es incorrecto en la siguiente "demonstración" de la Regla de la Cadena? Sea \(k = g(x + h) - g(x) \). Entonces \(\lim_{h \to 0} k = 0 \). Por tanto,

\[
\lim_{h \to 0} = \frac{f(g(x + h)) - f(g(x))}{h} = \lim_{h \to 0} \frac{f(g(x + h)) - f(g(x))}{g(x + h) - g(x)} \cdot \frac{g(x + h) - g(x)}{h} = \lim_{h \to 0} \frac{f(g(x) + h) - f(g(x))}{h}
\]

\(= f'(g(x))g'(x) \)

2.5 Derivadas de funciones trigonométricas

Las funciones trigonométricas, especialmente el seno y el coseno, juegan un papel muy importante en el modelado matemático de fenómenos reales. Concretamente, aparecen siempre que las cantidades que se manejan varían de forma periódica. Los movimientos elásticos, las vibraciones y las ondas de todo tipo involucran de forma natural funciones trigonométricas, y muchas leyes de fenómenos físicos y mecánicos se pueden formular como ecuaciones diferenciales en cuyas soluciones participan estas funciones.

En esta sección vamos a calcular las derivadas de las seis funciones trigonométricas. En realidad, sólo tendremos que trabajar en detalle una de ellas, la del seno, ya que las otras se pueden deducir a partir de ésa utilizando igualdades conocidas y las reglas de diferenciación de la Sección 2.32.

Algunos límites especiales

En primer lugar, es necesario obtener algunos límites trigonométricos necesarios para calcular la derivada del seno. Se supone que los argumentos de las funciones trigonométricas se expresan en radianes.

TEOREMA 7

Las funciones \(\sin \theta \) y \(\cos \theta \) son continuas para todo valor de \(\theta \). En particular, si \(\theta = 0 \) tenemos que

\[
\lim_{\theta \to 0} \sin \theta = \sin 0 = 0 \quad \text{y} \quad \lim_{\theta \to 0} \cos \theta = \cos 0 = 1
\]

Este resultado es inmediato observando las gráficas del seno y del coseno, por lo que no lo demostraremos aquí. Una demostración se basa en el Teorema del Sándwich (Teorema 4 de la Sección 1.2), y se sugiere en el Ejercicio 62 de la presente sección.

La gráfica de la función \(y = (\sin \theta)/\theta \) se muestra en la Figura 2.20. Aunque no está definida en \(\theta = 0 \), la función parece tener límite 1 cuando \(\theta \) tiende a 0.
TEOREMA 8. Un importante límite trigonométrico

$$\lim_{{\theta \to 0}} \frac{\sin \theta}{\theta} = 1 \quad \text{(con \theta en radianes)}$$

DEMOSTRACIÓN. Sea $0 < \theta < \pi/2$, y representemos θ como se muestra en la Figura 2.21. Los puntos $A(1, 0)$ y $P(\cos \theta, \sin \theta)$ están sobre la circunferencia unidad $x^2 + y^2 = 1$. El área del sector circular OAP está comprendida entre las áreas de los triángulos OAP y OAT:

Área $\Delta OAP < \text{Área sector } OAP < \text{Área } \Delta OAT$

Como se demuestra en la Sección P.7, el área de un sector circular de ángulo θ (radianes) y radio 1 es $\theta/2$. El área de un triángulo es $(1/2) \times \text{base} \times \text{altura}$, por lo que

Área $\Delta OAP = \frac{1}{2} (1) (\sin \theta) = \frac{\sin \theta}{2}$

Área $\Delta OAT = \frac{1}{2} (1) (\tan \theta) = \frac{\sin \theta}{2 \cos \theta}$

Entonces,

$$\frac{\sin \theta}{2} < \frac{\theta}{2} < \frac{\sin \theta}{2 \cos \theta}$$

o, tras multiplicar por el número positivo $2/\sin \theta$,

$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$$

Si ahora tomamos inversos, cambiando por tanto el orden de las inequaciones:

$$1 > \frac{\sin \theta}{\theta} > \cos \theta$$

Como $\lim_{{\theta \to 0^+}} \cos \theta = 1$ por el Teorema 7, la aplicación del Teorema del Sándwich produce

$$\lim_{{\theta \to 0^+}} \frac{\sin \theta}{\theta} = 1$$
Finalmente, nótese que $\sin\theta$ y θ son funciones impares. Por tanto, $f(\theta) = (\sin\theta)/\theta$ es una función par: $f(-\theta) = f(\theta)$, como se muestra en la Figura 2.20. Esta simetría implica que el límite por la izquierda en 0 debe ser igual al límite por la derecha:

$$\lim_{\theta \to 0^-} \frac{\sin\theta}{\theta} = 1 = \lim_{\theta \to 0^+} \frac{\sin\theta}{\theta}$$

por lo que $\lim_{\theta \to 0} (\sin\theta)/\theta = 1$, por el Teorema 1 de la Sección 1.2.

El Teorema 8 se puede combinar con las reglas de los límites y con igualdades trigonométricas conocidas para obtener otros límites trigonométricos.

Ejemplo 1 Demostrar que $\lim_{h \to 0} \frac{\cos h - 1}{h} = 0$.

Solución Utilizando la fórmula del ángulo mitad $\cos h = 1 - 2\sin^2 (h/2)$, se calcula:

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{2\sin^2 (h/2)}{h} = \lim_{h \to 0} \frac{\sin \theta}{h} \cdot \sin \theta = - (1)(0) = 0$$

Derivadas del seno y el coseno

Para calcular la derivada de $\sin x$ hay que usar la fórmula del seno de una suma (véase la Sección P.7):

$$\sin (x + h) = \sin x \cos h + \cos x \sin h$$

TEOREMA 9 La derivada de la función seno es la función coseno.

$$\frac{d}{dx} \sin x = \cos x$$

DEMONSTRACIÓN Se utilizan la definición de derivada, la fórmula del seno de una suma, las reglas de combinación de límites, el Teorema 8 y el resultado del Ejemplo 1:

$$\frac{d}{dx} \sin x = \lim_{h \to 0} \frac{\sin (x + h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x (\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}}{h}$$

$$= (\sin x) \cdot (0) + (\cos x) \cdot (1) = \cos x$$
TEOREMA 10 La derivada de la función coseno es el negativo de la función seno.

\[\frac{d}{dx} \cos x = -\sin x \]

DEMONSTRACIÓN Podríamos repetir la demostración anterior del seno, utilizando la fórmula del seno de la suma \(\cos (x + h) = \cos x \cos h - \sin x \sin h \). Una forma más sencilla es utilizar las fórmulas para ángulos complementarios, \(\sin \left(\frac{\pi}{2} - x \right) = \cos x \) y \(\cos \left(\frac{\pi}{2} - x \right) = -\sin x \), y la Regla de la Cadena de la Sección 2.4:

\[\frac{d}{dx} \cos x = \frac{d}{dx} \sin \left(\frac{\pi}{2} - x \right) = (-1) \cos \left(\frac{\pi}{2} - x \right) = -\sin x \]

Nótese el signo menos en la derivada del coseno. La derivada del seno es el coseno, pero la derivada del coseno es **menos** el seno. Esto se muestra gráficamente en la Figura 2.22.

![Figura 2.22 Gráfica conjunta del seno y el coseno](image)

Ejemplo 2 Calcule las derivadas de las siguientes funciones:

(a) \(\sin (2x) + \cos (3x) \), (b) \(x^2 \sin \sqrt{x} \) y (c) \(\frac{\cos x}{1 - \sin x} \)

Solución

(a) Aplicando la Regla de la Suma y la Regla de la Cadena:

\[\frac{d}{dx} (\sin (2x) + \cos (3x)) = \cos (2x)(2) - \sin (3x)(3) = \pi \cos (2x) - 3\sin (3x) \]

(b) Aplicando las Reglas del Producto y de la Cadena:

\[\frac{d}{dx} (x^2 \sin \sqrt{x}) = 2x \sin \sqrt{x} + x^2 (\cos \sqrt{x}) \frac{1}{2\sqrt{x}} = 2x \sin \sqrt{x} + \frac{1}{2} x^{3/2} \cos \sqrt{x} \]

(c) Aplicando la Regla del Cociente:

\[\frac{d}{dx} \left(\frac{\cos x}{1 - \sin x} \right) = \frac{(1 - \sin x)(-\sin x) - (\cos x)(0 - \cos x)}{(1 - \sin x)^2} \]

\[= \frac{-\sin x + \sin^2 x + \cos^2 x}{(1 - \sin x)^2} \]

\[= \frac{1 - \sin x}{(1 - \sin x)^2} = \frac{1}{1 - \sin x} \]

donde se ha utilizado la igualdad \(\cos^2 x + \sin^2 x = 1 \) para simplificar la expresión de la línea central.
Utilizando fórmulas trigonométricas se puede modificar a veces la forma de calcular la derivada. Diferenciando de diferentes formas se pueden obtener respuestas que parecen distintas, pero que deben ser iguales si no se han cometido errores.

Ejemplo 3 Utilice dos métodos diferentes para calcular la derivada de la función $f(t) = \sin t \cos t$.

Solución Por la Regla del Producto,

$$f'(t) = (\cos t)(\cos t) + (\sin t)(-\sin t) = \cos^2 t - \sin^2 t$$

Por otra parte, como $\sin (2t) = 2\sin t \cos t$, tenemos que

$$f'(t) = \frac{d}{dt} \left(\frac{1}{2} \sin (2t) \right) = \left(\frac{1}{2} \right) (2) \cos (2t) = \cos (2t)$$

Las dos respuestas son realmente la misma, ya que $\cos (2t) = \cos^2 t - \sin^2 t$.

Es muy importante recordar que las fórmulas de las derivadas de $\sin x$ y $\cos x$ se han obtenido bajo el supuesto de que x se mide en **radianes**. Como $180^\circ = \pi$ radianes, $x^\circ = \pi x/180$ radianes. Por la Regla de la Cadena,

$$\frac{d}{dx} \sin (x^\circ) = \frac{d}{dx} \sin \left(\frac{\pi x}{180} \right) = \frac{\pi}{180} \cos \left(\frac{\pi x}{180} \right) = \frac{\pi}{180} \cos (x^\circ)$$

Análogamente, la derivada de $\cos (x^\circ)$ es $(-\pi/180) \cos (x^\circ)$.

![Figura 2.23](image)

Figura 2.23 $\sin (x^\circ)$ oscila mucho más lentamente que $\sin x$. Su máxima pendiente es $\pi/180$.

Derivadas de otras funciones trigonométricas

Como $\sin x$ y $\cos x$ son diferenciables en todos sus valores, las funciones

$$
\tan x = \frac{\sin x}{\cos x} \quad \sec x = \frac{1}{\cos x} \\
\cot x = \frac{\cos x}{\sin x} \quad \csc x = \frac{1}{\sin x}
$$

son diferenciables en todos los valores de x en donde están definidas (es decir, donde sus denominadores son distintos de cero). Sus derivadas se pueden calcular aplicando las Reglas del Co-ciente y de la Inversa, como se indica a continuación:

$$
\frac{d}{dx} \tan x = \sec^2 x \quad \frac{d}{dx} \sec x = \sec x \tan x \\
\frac{d}{dx} \cot x = -\csc^2 x \quad \frac{d}{dx} \csc x = -\csc x \cot x
$$
Contenido

Las seis funciones trigonométricas son diferenciables y, por tanto, continuas (por el Teorema 1) en todos sus dominios. Esto significa que se pueden calcular los límites de la mayoría de las funciones trigonométricas cuando $x \to a$ simplemente evaluando dichas funciones en $x = a$.

Las tres funciones «co-» (coseno, cotangente y cosecante) tienen signos menos en sus derivadas.

Ejemplo 4 Verifique las fórmulas de las derivadas de $\tan x$ y $\sec x$.

Solución Para la tangente se utiliza la Regla del Cociente y para la secante, la Regla de la Inversa:

$$
\frac{d}{dx} \tan x = \frac{d}{dx} \left(\frac{\sin x}{\cos x} \right) = \frac{\cos x \cdot \frac{d}{dx} (\sin x) - \sin x \cdot \frac{d}{dx} (\cos x)}{\cos^2 x} = \frac{\cos^2 x \cdot \cos x - \sin x (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x
$$

$$
\frac{d}{dx} \sec x = \frac{d}{dx} \left(\frac{1}{\cos x} \right) = -\frac{1}{\cos^2 x} \frac{d}{dx} (\cos x) = -\frac{1}{\cos^2 x} (-\sin x) = \frac{\sin x}{\cos x} = \sec x \tan x
$$

Ejemplo 5

(a) $\frac{d}{dx} \left[3x + \cot \left(\frac{x}{2} \right) \right] = 3 + \left[-\csc^2 \left(\frac{x}{2} \right) \right] \frac{1}{2} = 3 - \frac{1}{2} \csc^2 \left(\frac{x}{2} \right)$

(b) $\frac{d}{dx} \left(\frac{3}{\sin (2x)} \right) = \frac{d}{dx} (3 \csc (2x)) = 3(-\csc (2x) \cot (2x)) (2) = -6 \csc (2x) \cot (2x)$

Ejemplo 6 Calcule las rectas tangente y normal a la curva $y = \tan (\pi x/4)$ en el punto $(1, 1)$.

Solución La pendiente de la tangente a la curva $y = \tan (\pi x/4)$ en el punto $(1, 1)$ es:

$$
\frac{dy}{dx} \bigg|_{x = 1} = \frac{\pi}{4} \sec^2 (\pi x/4) \bigg|_{x = 1} = \frac{\pi}{4} \sec^2 \left(\frac{\pi}{4} \right) = \frac{\pi}{4} (\sqrt{2})^2 = \frac{\pi}{2}
$$

La tangente es la recta

$$
y = 1 + \frac{\pi}{2} (x - 1) \quad \Rightarrow \quad y = \frac{\pi x}{2} - \frac{\pi}{2} + 1
$$

La pendiente de la normal es $m = -2/\pi$, por lo que su ecuación punto-pendiente es

$$
y = 1 - \frac{2}{\pi} (x - 1) \quad \Rightarrow \quad y = -\frac{2x + 2}{\pi} + 1
$$
Ejercicios 2.5

1. Verifique la fórmula de la derivada de \(\csc x = \frac{1}{\sin x} \).
2. Verifique la fórmula de la derivada de \(\cot x = \frac{\cos x}{\sin x} \).

Calcule las derivadas de las funciones de los Ejercicios 3-36. Simplifique sus respuestas siempre que sea posible. Considere también la posibilidad de simplificar la expresión antes de diferenciarla.

3. \(y = \cos 3x \)
4. \(y = \frac{x}{5} \)
5. \(y = \tan nx \)
6. \(y = \sec ax \)
7. \(y = \cot (4 - 3x) \)
8. \(y = \frac{\sin ((a - x)/3)}{3} \)
9. \(f(x) = \cos (s - rx) \)
10. \(y = \frac{1}{4x + B} \)
11. \(\frac{\sin (nx^2)}{\cos x} \)
12. \(\frac{\cos (\sqrt{x})}{\cos x} \)
13. \(y = \sqrt{1 + \cos x} \)
14. \(y = \frac{1}{(2x + x)^2} \)
15. \(\frac{g(x) = \tan (\theta \cos(\theta))}{\cos x} \)
16. \(g(x) = \tan (\theta \sin(\theta)) \)
17. \(u = \sin^3 (ax/2) \)
18. \(y = \sum (1/x) \)
19. \(F(t) = \sum \sin at \cos at \)
20. \(G(t) = \sum \sin at \cos at \)
21. \(\frac{\tan x + \cot x}{\sin^2 x} \)
22. \(\frac{\cos x - \sin^2 x}{\sin x + \cos x} \)
23. \(\tan x - x \)
24. \(\tan (3x) \cot (3x) \)
25. \(f(t) = \sum \sin t \cos t \)
26. \(f(t) = \sum \frac{\cos x}{1 + \sin x} \)
27. \(f(t) = \sum \frac{\cos x}{1 + \sin x} \)
28. \(f(t) = \sum \frac{x^2 \cos (3x)}{1 + \sin x} \)
29. \(f(t) = \sum \frac{x^2 \cos (3x)}{1 + \sin x} \)
30. \(f(t) = \sum \frac{x^2 \cos (3x)}{1 + \sin x} \)
31. \(f(t) = \sum \frac{x^2 \cos (3x)}{1 + \sin x} \)
32. \(f(t) = \sum \frac{x^2 \cos (3x)}{1 + \sin x} \)
33. \(f(t) = \sum \frac{x^2 \cos (3x)}{1 + \sin x} \)
34. \(f(t) = \sum \frac{x^2 \cos (3x)}{1 + \sin x} \)
35. \(f(t) = \sum \frac{x^2 \cos (3x)}{1 + \sin x} \)
36. \(f(t) = \sum \frac{x^2 \cos (3x)}{1 + \sin x} \)
37. Sabiendo que \(\sin 2x = 2 \sin x \cos x \), deduzca que \(\cos 2x = \cos^2 x - \sin^2 x \).
38. Sabiendo que \(\cos 2x = \cos^2 x - \sin^2 x \), deduzca que \(\sin 2x = 2 \sin x \cos x \).

En los Ejercicios 39-42, calcule las ecuaciones de las rectas tangente y normal a las curvas \(y = f(x) \) en los puntos dados.

39. \(y = \sin x, \quad (\pi, 0) \)
40. \(y = \tan (2x), \quad (0, 0) \)
41. \(y = \sqrt{2} \cos (x/4), \quad (\pi, 1) \)
42. \(y = \cos^2 x, \quad \left(\frac{\pi}{3}, \frac{1}{4} \right) \)
43. Calcule la ecuación de la recta tangente a la curva \(y = \sec (x^2) \) en el punto \(x = 45 \).
44. Calcule la ecuación de la recta normal a la curva \(y = \sec (x^2) \) en el punto \(x = 60 \).
45. Calcule los puntos de la curva \(y = \tan x \), \(-\pi/2 < x < \pi/2 \), donde su tangente es paralela a la recta \(y = 2x \).
46. Calcule los puntos de la curva \(y = \tan (2x) \), \(-\pi/4 < x < \pi/4 \), donde su tangente es paralela a la recta \(y = -x/8 \).
47. Demuestre que las gráficas de \(y = \sin x \), \(y = \cos x \), \(y = \sec x \) y \(y = \csc x \) tienen tangentes horizontales.
48. Demuestre que las gráficas de \(y = \tan x \) y \(y = \cot x \) nunca tienen tangentes horizontales.

¿Tienen las gráficas de las funciones de los Ejercicios 49-52 tangentes horizontales en el intervalo \(0 \leq x \leq 2\pi \)? Si es así, ¿dónde? Si no, ¿por qué no?

49. \(y = x + \sin x \)
50. \(y = 2x + \sin x \)
51. \(y = x + 2 \sin x \)
52. \(y = x + 2 \cos x \)

Calcule los límites de los Ejercicios 53-56.

53. \(\lim_{x \to 0} \frac{\tan (2x)}{x} \)
54. \(\lim_{x \to \pi} \frac{\sin (1 + \cos x)}{x} \)
55. \(\lim_{x \to 0} \frac{(x \cos x \cot x)}{(x^2 \csc x \cot x)} \)
56. \(\lim_{x \to 0} \frac{(x \cos (\pi - x \cos^2 x))}{x^2} \)
57. Utilice el método del Ejemplo 1 para calcular \(\lim_{h \to 0} \frac{1 - \cos h}{h^2} \).
58. Calcule los valores de \(a \) y \(b \) que hacen que
\[f(x) = \begin{cases} ax + b, & x < 0 \\ 2\sin x + 3\cos x, & x \geq 0 \end{cases} \]
sea diferenciable en \(x = 0 \).
59. ¿Cuántas rectas existen que pasan por el origen y son tangentes a \(y = \cos x \)? Calcule (con una precisión de 8 decimales) las pendientes de las dos rectas que tienen las mayores pendientes positivas.

Utilice Maple o algún otro sistema de matemáticas para computadora para calcular y simplificar las derivadas de las funciones de los Ejercicios 60-61.

60. \(\frac{d}{dx} \frac{x \cos (x \sin x)}{x \sin x + \cos (x \cos x)} \bigg|_{x=0} \)
61. \[\frac{d}{dx} \left(\frac{\sqrt{2x^2 + 3 \sin(x^2)} - (2x^2 + 3)^{3/2} \cos(x^2)}{x} \right) \bigg|_{x = \sqrt{3}} \]

62. **Continuidad del seno y el coseno**

(a) Demuestre que
\[
\lim_{\theta \to 0} \sin \theta = 0 \quad \text{y} \quad \lim_{\theta \to 0} \cos \theta = 1
\]
de la siguiente forma: utilice el hecho de que la longitud de la cuerda \(AP\) es menor que la longitud del arco \(AP\) en la Figura 2.24 para demostrar que
\[
\sin^2 \theta + (1 - \cos \theta)^2 < \theta^2
\]
Deduzca a continuación que \(0 \leq |\sin \theta| < |\theta|\) y que \(0 \leq |1 - \cos \theta| < |\theta|\). Utilice ahora el Teorema del Sándwich de la Sección 1.2.

(b) El apartado (a) indica que \(\sin \theta \) y \(\cos \theta\) son continuas en \(\theta = 0\). Utilice ahora las fórmulas de suma para deducir que son por tanto continuas para todo \(\theta\).

2.6 El Teorema del Valor Medio

Si salimos un coche a las 13:00 horas y llegamos a una ciudad a 150 km de distancia del punto de partida a las 15:00 horas, habremos viajado a una velocidad media de 150/2 = 75 km/h. Aunque no hayamos viajado a esa velocidad constante, debemos haber viajado a 75 km/h al menos un instante en nuestro trayecto, porque si nuestra velocidad hubiera sido siempre inferior a 75 km/h hubiéramos recorrido menos de 150 km en dos horas, y si nuestra velocidad hubiera sido siempre superior a 75 km/h, habríamos recorrido más de 150 km en dos horas. Para pasar de un valor inferior a 75 km/h a un valor superior a 75 km/h nuestra velocidad, que es una función continua con el tiempo, debe pasar por el valor de 75 km/h en algún instante intermedio.

La conclusión de que la velocidad media en un intervalo de tiempo debe ser igual a la velocidad instantánea en algún instante de ese intervalo es un ejemplo de principio matemático importante. En términos geométricos indica que si \(A\) y \(B\) son dos puntos de una curva suave, entonces hay al menos un punto \(C\) en el curva entre \(A\) y \(B\) donde la recta tangente es paralela a la cuerda \(AB\). Véase la Figura 2.25.

![Figura 2.25](image_url) Existe un punto \(C\) en la curva donde la tangente es paralela a \(AB\).

El siguiente teorema postula de forma más precisa el principio anterior.